УДК 541.18.042.2:678.745

СЕДИМЕНТАЦИЯ СУСПЕНЗИИ ДИОКСИДА ТИТАНА МАГНИТНЫМИ ФЛОКУЛЯНТАМИ

© 2023 г. В. Е. Проскурина^{1, *}, Е. С. Кашина¹, А. П. Рахматуллина¹

¹Казанский национальный исследовательский технологический университет, ул. Карла Маркса, 68, Казань, 420015 Россия

*e-mail: v_proskurina@mail.ru Поступила в редакцию 13.07.2022 г. После доработки 12.10.2022 г. Принята к публикации 12.10.2022 г.

Синтезированы магнитные флокулянты на основе наночастиц магнетита Fe_3O_4 и ионогенных и неионогенных сополимеров акриламида, отличающихся по концентрации ионогенных звеньев и значению молекулярной массы. Синтез осуществляли в два этапа: осаждением аммиаком из смешанного водного раствора солей хлоридов железа II и III было выделено два образца магнетита, различающихся по размерным и поверхностным характеристикам, которые затем смешивали с водными растворами полиакриламидных флокулянтов. Характеристику индивидуальных частиц магнетита, сополимеров, магнитных флокулянтов на их основе осуществляли методом динамического светорассеяния. Оценено влияние природы и флокулирующей способности магнитных флокулянтов на процесс седиментации суспензии диоксида титана. Изменяя размеры магнитных наночастиц и молекулярные параметры сополимеров акриламида в магнитном флокулянте можно получить высокоэффективный многофункциональный флокулянт для селективного разделения многокомпонентных дисперсных систем.

DOI: 10.31857/S0023291222600420, EDN: KFCFCX

ВВЕДЕНИЕ

Нанокомпозиты на основе частиц магнетита и синтетических полимеров благодаря сочетанию магнитных характеристик и активности функциональных групп полимеров являются идеальными кандидатами для создания высокоэффективных, селективных полифункциональных наноструктур, применимых в различных областях науки и техники [1-3]. Наночастицы оксида железа (Fe_3O_4) привлекли повышенное внимание исследователей в связи с высоким значением магнитного момента, биосовместимостью, химической стабильностью, нетоксичностью и простотой изготовления, что обуславливает их широкое применение в биомедицине: адресная доставка лекарств, магнитно-резонансная томография, магнитно-опосредованное разделение биомолекул [4-6]. Наряду с вышеперечисленным, актуальны исследования, связанные с применением наночастиц магнетита в качестве потенциальных адсорбентов для удаления ионов тяжелых металлов и органических загрязнителей из сточных вод, а также катализаторов в ряде реакций органического синтеза. Магнитные сорбенты характеризуются простотой получения и возможностью управлять их движением извне с помощью магнитного поля. Они сочетают в себе высокую сорбционную способность благодаря развитой удельной поверхности и магнитные свойства, характерные для оксидов железа, преимущественно для магнетита (Fe₃O₄) и маггемита (γ -Fe₂O₃), которые демонстрируют ферримагнетизм при комнатной температуре с намагниченностью, достигающей до 92 эму/г [7, 8]. Магнитные наночастицы имеют высокое соотношение площади поверхности к объему, повышенную скорость связывания с обнаруживаемыми веществами и могут осуществлять магнитоуправляемую агрегацию и диспергирование, что позволяет реализовывать предварительное концентрирование, очистку и разделение дисперсных систем различной природы более простыми и легкими методами. Эти методы имеют ряд преимуществ: высокая специфичность, быстрота и хорошая воспроизводимость [8-10]. Для повышения их эффективности в вышеупомянутых областях применения необходимо получение наночастиц магнетита со средним размером частиц менее 100 нм [11]. Из всего ассортимента используемых методов химическое соосаждение является наиболее простым и эффективным путем получения наночастиц магнетита с большим выходом с заданным размерным диапазоном [10].

Однако наночастицы Fe₃O₄ имеют тенденцию к агрегации и увеличению размера агломератов

Название флокулянта и его химическая формула повторяющихся звеньев	Условные обозначения флокулянтов	β, мол %	$M \times 10^{-6}$	ξ, мВ
Статистический сополимер акриламида с гидрохлоридом диметиламиноэтилметакрилата	К1 (катионный)	4	3.8	+7.8
$ \begin{pmatrix} H_{2} & H_{2} \\ C & C & C \\ \downarrow_{n} & C & C \\ C & C & C & C \\ C & C & C & C \\ \downarrow_{m} & C & C & C \\ C & C & C & C \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & $	К2 (катионный)	25	0.74	+22.2
Статистический сополимер акриламида с акрилатом натрия $ \begin{pmatrix} H_2 & H \\ C & C & C \\ \downarrow & & \\ & $	А (анионный)	71.2	13.5	-18.2
Полиакриламид $ \begin{array}{c} \hline CH_2 \\ \hline CH_2 \\ \hline CH_2 \\ \hline CH_2 \\ \hline NH_2 \\ n \end{array} $	Н (неионогенный)	0	46.2	0

по причине высокого соотношения поверхности к объему и намагниченности. Одним из способов решения данной проблемы является синтез наночастиц магнетита в присутствии полимеров или с последующим смешением с растворами полимеров, обладающих подходящими функциональными возможностями [12-15]. Большинство широко используемых флокулянтов – это производные полиакриламида, что связано с их хорошей растворимостью в воде, высокой молекулярной массой и способностью образовывать нейтральные, а также катионные и анионные структуры в результате полимераналогичных превращений или сополимеризации соответствующих мономеров [16]. Макромолекулы полимеров способны выступать в роли покрывающих агентов для отделения частиц друг от друга и уменьшения общего размера полученных наночастиц. Поэтому разработка и синтез магнитных нанокомпозитов имеет большое значение, а особый интерес представляют нанокомпозиты, позволяющие разделять и концентрировать биологические дисперсные системы.

Цель настоящей работы заключалась в получении новых высокоэффективных магнитных флокулянтов на основе наночастиц магнетита и ионогенных и неионогенных полиакриламидных флокулянтов и количественном изучении влияния концентрации полученных образцов на флокулирующие свойства в отношении модельной дисперсной системы — суспензии диоксида титана в отсутствие и при наложении внешнего магнитно-го поля.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве флокулирующих агентов были выбраны катионные, анионный и неионогенный (со)полимеры акриламида (АА) (ЗАО "АльфаХим-Пром", г. Москва), основные параметры которых приведены в табл. 1.

Для синтеза магнетитов в работе использовали следующие pearentus: $FeCl_2 \cdot 4H_2O$, Aldrich, 99%; FeCl₃, Aldrich, 97%; 25 мас. % раствор аммиака, квалификации "чда", АО "Сибреактив" с последующим разбавлением его до концентрации 15 мас. %.

Частицы магнетита Fe_3O_4 требуемого состава были получены методом соосаждения солей двухи трехвалентного железа в присутствии гидрата аммиака при мольном соотношении $Fe^{3+}/Fe^{2+} = 2:1$ по методике, описанной в статье [17]. Известно [7], что магнетит является структурной смесью оксидов железа (II) и (III), которую можно представить общей формулой $nFeO \cdot mFe_2O_3$, причем магнетит, у которого n = m, обладает наибольшей магнитной восприимчивостью. Именно использование более слабого основания позволяет достичь одинакового содержания в структуре магнетита оксидов железа(II) и (III), поэтому синтез осуществляли с участием гидрата аммиака NH₃· H₂O. С помощью 15 мас. % раствора аммиа-

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 1 2023

ка рН смеси доводили до 9.3-9.5. В ходе синтеза было получено 2 образца магнетита, различающихся условиями их выделения. Образец 1 центрифугировали при 3000 об./мин в течение 10 мин. Образец 2 подвергали ультразвуковой обработке на установке УЗДН-1 (22 кГц) в течение 10 мин. К образцу 2 при перемешивании добавляли раствор HCl для нейтрализации анионных зарядов на наночастицах магнетита и приданию им положительного заряда. После образцы 1, 2 дважды промывали дистиллированной водой, а затем этанолом и сушили при 40°С в вакууме в течение 6 ч. На рис. 1 представлены размеры магнитных наночастиц МНЧ1 и МНЧ2. В табл. 2 представлены данные по измерению ξ-потенциала магнитных флокулянтов (МФ). Образцы МФ были подобраны таким образом, чтобы отрицательно заряженные МНЧ1 взаимодействовали с положительно заряженными макромолекулами катионных полимерных образцов, а положительно заряженные МНЧ2 – соответственно с отрицательно заряженным анионным сополимером АА и с неионогенным образцом. При концентрации 10 г/дм³ частицы магнетита (образец 1, МНЧ1) были отрицательно заряжены $\xi = -17.6$ мВ, а в образце 2 (МНЧ2) — положительно заряжены $\xi = +15.3$ мВ. Однако Е-потенциал для водных растворов катионных полимеров К1, К2 был положительным и после смешивания сополимеров акриламида с Fe₃O₄ ξ-потенциал магнитных флокулянтов резко возрастал. В присутствии водного раствора анионного образца ξ-потенциал МФ принимал отрицательные значения, а неионогенный образец полиакриламида не оказывал влияние на изменение значения ξ-потенциала МΦ.

Оценку флокулирующего поведения изучаемых реагентов проводили в режиме стесненного оседания на модельной дисперсной системе (ДС) суспензии TiO₂ со средним размером частиц $R_{cp} =$ $= 1.5 \times 10^{-6}$ м и электрокинетическим потенциалом $\zeta = -11$ мВ. Результаты гранулометрического анализа суспензии TiO₂ свидетельствуют о сравнительно небольшой полидисперсности по размерам ($R_{\min} = 0.44 \times 10^{-6}$ м и $R_{\max} = 4.2 \times 10^{-6}$ м). До начала эксперимента в надосадочный слой жидкости в цилиндры объемом 2000 см³ последовательно вводили расчетное количество разбавленных растворов ионогенных и неионогенных сополимеров АА и магнитных флокулянтов с концентрацией 0.01%. Содержимое цилиндра перемешивали, и процесс седиментации изучали по изменению положения границы раздела между осветленной и неосветленной частями мерного цилиндра во времени. Погрешность измерения составила 1%. Для создания магнитного поля использовали неодимовые магниты: N35 (12.2 кГс) и N38 (12.5 кГс) диаметром 65 и 60 мм, толщиной 5 и 30 мм соответственно. Для количественной

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 1 2023

Рис. 1. Распределение по размерам частиц *d* магнетита в водной среде (образцы 1 (МНЧ1), 2 (МНЧ2)) по данным ДРС.

оценки флокулирующих показателей были рассчитаны интегральные флокулирующие эффекты *D* по формуле [16]:

$$D=\frac{\overline{u}_i}{\overline{u}_0}-1,$$

где $\overline{u_i}$, $\overline{u_0}$ — средние скорости седиментации суспензии TiO₂, соответственно в присутствии полимеров и магнитных флокулянтов (концентрации *C*) и в их отсутствие.

Ионогенные и неионогенные (со)полимеры AA были изучены методом визкозиметрического анализа на вискозиметре Оствальда с диаметром капилляра 0.54×10^{-3} м. Погрешность измерений составила $\pm 3\%$. Поправка на кинетическую энергию течения жидкости была менее 1.5% и поэтому не учитывалась при расчете чисел вязкости η_{ya}/C . Молекулярную массу (со)полимеров акриламида определяли с использованием соотношения

Марка–Куна–Хаувинка $[\eta] = KM^a$, где $[\eta]$ – предельное число вязкости. Для снятия полиэлектролитного эффекта при определении $[\eta]$ в качестве растворителя использовали водный раствор 0.5 М КВг.

Средний размер частиц и величину ζ-потенциала поверхности частиц дисперсной фазы определяли методом динамического рассеяния света

Таблица 2. ξ -Потенциал индивидуальных магнитных наночастиц (C = 10 г/дм³) и магнитных флокулянтов (C = 0.1 г/дм³) на основе катионных, анионного и не-ионогенного (со)полимеров акриламида

ξ, мВ						
MH41	МНЧ2	MΦ1K1	MΦ1K2	ΜΦ2Α	МФ2Н	
-17.6	+15.3	+19.2	+31.7	-26.2	+15.3	

Параметр	$C \times 10^4$, кг/м ³	K1	K2	А	Н		
Число макромолекул N _м × 10 ⁻¹⁵	4	0.063	0.065	0.002	0.0005		
	12	0.190	0.195	0.005	0.001		
	28	0.443	0.455	0.012	0.004		
	60	0.950	0.976	0.027	0.008		
$N_{M}/N_{y} \times 10^{-5}$	4	0.044	0.045	0.012	0.004		
	12	0.131	0.134	0.037	0.011		
	28	0.305	0.313	0.086	0.025		
	60	0.655	0.678	0.184	0.054		
$N_{\rm q} \times 10^{-10}$	15.8						

Таблица 3. Соотношение количества макромолекул полимеров и частиц диоксида титана при различных концентрациях сополимеров АА

(ДРС) на анализаторе размера частиц и дзета-потенциала серии Zetasizer Nano-ZS, оснащенном гелий-неоновым лазером (633 нм, 4 мВт). Графическую интерпретацию результатов измерения получали с помощью программного обеспечения "DTS Application Software" (Malvern Instruments). Определение ζ-потенциала в водных дисперсных системах осуществляли методом электрофоретического рассеяния света с применением технологии M3-PALS (использование быстро и медленно переменного электрического поля наряду с фазовым и частотным анализом рассеянного света). Ошибки измерений размера и ζ-потенциала частиц составили $\pm 2\%$ и ± 0.12 мВ соответственно.

ИК-спектры получали на Фурье-спектрометре ALPHA-T S/N 102706 ("Bruker") в спектральном диапазоне 375-4000 см⁻¹, разрешением 4 см⁻¹, в таблетках с KBr. Отнесение характеристических полос проводили по справочным материалам¹.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализ ИК-спектров магнитных флокулянтов

ИК-спектры магнитных флокулянтов указывали на изменение поверхностных свойств частиц магнетита с покрытием, что позволило предположить об успешном проведении синтеза. Для определения химической структуры образцов МФ с частицами магнетита разного размера были использованы данные ИК Фурье-спектроскопии. Характерный пик для этих материалов составляет около 564 см⁻¹ (вибрация Fe–O), что объясняется присутствием Fe–O в Fe₃O₄. Полоса поглощения при 3402 см⁻¹ была отнесена к группе-NH₂, пики при 1653 и 1404 см⁻¹ были приписаны C=O и C–N

связям в амидных группах, соответственно. Характерный пик при 947 см⁻¹ относится к катионной группе четвертичного аммония-N⁺(CH₃)₃. В образцах были отмечены пики поглощения, соответствующие связи F–O объемного магнетита в областях 634, 564 и 446 см⁻¹. Характерные пики, соответствующие статистическим сополимерам AA и Fe₃O₄, присутствовали на ИК-спектрах всех образцов MФ.

Флокулирующие свойства магнитных флокулянтов на основе наночастиц магнетита и ионогенных и неионогенных полиакриламидных флокулянтов

На следующем этапе исследования была оценена флокулирующая способность индивидуальных сополимеров АА и полученных МФ на основе двух образцов магнетита и анализируемых сополимеров АА в режиме стесненного оседания на модельной ДС – суспензии диоксида титана под действием внешнего магнитного поля. При рассмотрении процессов флокуляции следует учитывать, что даже для минимальных значений C = $= 4 \times 10^{-4}$ кг/м³ количество макромолекул N_м, приходящихся на одну частицу дисперсной фазы $(\Box \Phi) - N_{_{\rm H}}$, составляет несколько сотен или тысяч и с увеличением концентрации флокулянтов происходит пропорциональный рост их числа (табл. 3), где $N_{\rm \scriptscriptstyle q}-$ число частиц дисперсной фазы в суспензии TiO₂; N_м – число макромолекул (со)полимеров АА, приходящихся на число частиц диоксида титана в объеме суспензии. Расчеты проведены для концентрации частиц Д $\Phi C_{\Pi \Phi} = 0.8\%$.

Эффективность действия полимеров на устойчивость дисперсий определяется особенностями адсорбции их макромолекул на границе раздела фаз и структурой образующихся адсорбционных слоев [18]. Можно предположить, что сложный, избирательный характер процессов адсорбции [19]

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 №1 2023

¹ Тарасевич Б.Н. ИК-спектры основных классов органических соединений. Справочные материалы. М.: МГУ, 2012. С. 14–27.

отдельных ионогенных и неионогенных (акриламидных) фрагментов макромолекул А, К1, К2 и Н на заряженных и незаряженных участках поверхности раздела фаз является причиной существенных различий в макроскопических процессах адсорбции и флокуляции с участием сополимеров АА. В случае адсорбции образцов К2 и А, имеющих высокую концентрацию ионогенных звеньев, доминирующим механизмом снижения устойчивости частиц диоксида титана является нейтрализационный механизм. Чем меньше заряд макромолекулы, тем больше ее молекулярная масса и, соответственно больше вклад мостичного механизма в агрегацию. Данный механизм реализуется для образцов полимеров К1 и Н.

По сравнению с индивидуальными полимерными образцами магнитные флокулянты на их основе (рис. 2) позволяют более направленно регулировать свойства суспензии диоксида титана и протекающих в ней макроскопических процессов адсорбции макромолекул флокулянтов, агрегирования частиц ДФ с образованием флокул и аспекты седиментации. Наличие указанных различий обусловлено тем, что ионы Fe²⁺ и Fe³⁺ на поверхности образца магнетита Fe₃O₄ (МНЧ1) получают возможность активно взаимодействовать с группами СОО- анионного сополимера АА, предположительно, за счет реакции лигандного обмена (рис. 2а). Несмотря на то, что поверхностные группы Fe₃O₄ заряжены отрицательно, адсорбируется достаточно большое количество анионного образца, что обеспечивает стабилизацию дисперсной системы за счет действия стерического и электростатического механизмов. Поверхностные группы Fe₃O₄ (МНЧ2) заряжены положительно и адсорбируют отрицательно заряженные группы анионного образца А за счет электростатического взаимодействия (рис. 26). Установлено [7], что диффузия в разбавленных растворах при перемешивании протекает очень быстро после добавления раствора (со)полимера АА: в течение 20 с достигается практически полный контакт полиэлектролита с частицами дисперсной фазы магнетита. Как правило, за это время конформация макромолекул еще не успевает измениться, и поэтому скорость диффузии сопоставима со скоростью столкновения частиц. Для всех систем при максимальной концентрации полимерной добавки $(C = 60 \times 10^{-4} \, \text{кг/м}^3)$ наблюдаются высокие значения параметра D. Максимальные значения флокулирующих эффектов отмечены для образцов МФ1К1 и МФ2А по сравнению с индивидуальными полиакриламидными флокулянтами. Стоит отметить, что измерения намагниченности синтезированных магнитных флокулянтов не проводились, ввиду того что в ряде публикаций [20-23] уже представлены данные по намагниченности

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 1 2023

магнетита, а так как анализируемые магнитные флокулянты состоят из магнетита и сополимеров акриламида, то последние обладают высокой флокулирующей способностью и на намагниченность не влияют. В результате проявляется комбинированное действие компонентов, составляющих магнитный флокулянт. Отмечено незначительное ускорение процесса седиментации в магнитном поле с участием образцов МФ1К1 и МФ2А, по сравнению с процессом в отсутствие магнитного поля. Полученный результат можно объяснить тем, что заряженные частицы дисперсной фазы, находясь в верхней части цилиндра, оседают под действием силы тяжести, затем в процессе оседания в результате формирования агрегатов-флокул с участием магнитных флокулянтов испытывают силу притяжения со стороны магнита, расположенного у основания цилиндра, при этом процесс седиментации ускоряется, но не сильно. Предполагается, что магнитные наночастицы в составе магнитного флокулянта в магнитном поле ориентируются по силовым линиям. Как только заряженные наночастицы магнетита, участвующие в процессе седиментации суспензии диоксида титана, пересекают силовые линии магнитного поля, то возникает направленное их движение. В магнитном поле на заряженную частицу действует сила Лоренца. В результате возникают две конкурирующие силы: сила тяжести и сила Лоренца. Исходя из анализа экспериментальных данных выяснили, что необходим оптимальный диапазон размера магнитных наночастиц от 50 до 100 нм для того, чтобы сохранялась нужная намагничиваемость, и при этом была достаточно высокая агрегативная и седиментационная устойчивость данных частиц с сохранением высокой площади поверхности для последующего взаимодействия с полимерными составляющими магнитного флокулянта. Учитывая высокую флокулирующую способность образцов МФ1К1 и МФ2А на основе наночастиц магнетита с размером 70 и 164 нм соответственно, именно эти МФ (рис. 3) были выбраны для оценки варьирования места наложения и величины магнитного поля двумя неодимовыми магнитами, положение которых изменяли как по высоте цилиндра, так и по расстоянию между ними (рис. 4). Согласно литературным данным [24], процесс флокуляции в присутствии высокомолекулярных соединений возможен как за счет адсорбции одной макромолекулы на поверхности частиц дисперсной фазы, так и за счет межмолекулярного связывания их ранее адсорбированными макромолекулами с образованием зацеплений, переплетений, вторичных структур и ассоциатов. Необходимо акцентировать внимание на том, что молекулярное связывание возможно не только в момент взаимодействия частиц ДФ со сформированным адсорбированным слоем, но и в самом дальнейшем процессе по-

Полимерная добавка

Рис. 2. Флокулирующий эффект индивидуальных полимеров и магнитных флокулянтов при концентрации $C = 60 \times 10^{-4} \, \mathrm{kr/m^3}$ в отсутствие (а) и при наложении (б) внешнего магнитного поля.

этапного формирования поверхностного слоя при взаимодействии агрегатов макромолекул с поверхностью частиц диоксида титана [25].

По результатам сопоставительного анализа флокулирующего поведения МФ прослеживается корреляция между расстоянием от цилиндра и флокулирующим эффектом (рис. 3). Два неодимовых магнита N35 расположены в горизонтальной плоскости перпендикулярно оси цилиндра. Увеличение расстояния от магнитов приводит к улучшению оседания частиц дисперсной фазы, и как следствие к росту флокулирующего эффекта.

Рис. 3. Изменение флокулирующего эффекта *D* магнитных флокулянтов MФ1K1 (а) и MФ2A (б) при варьировании места локализации магнитного поля (положения: 1 – верх, 2 – середина, 3 – низ) и расстояния *R* до цилиндра (1, 2, 3, 4 см) при концентрации $C = 12 \times 10^{-4} \text{ кг/m}^3$.

Этот результат мы констатируем как экспериментальный факт, который объясняется тем, что при удалении магнитов от оси цилиндра на расстояние 1, 2, 3, 4 см постоянное магнитное поле, создаваемое неодимовыми магнитами, взаимодействует с переменным магнитным полем, возникающим при движении заряженного потока частиц, сформированных с участием магнитных флокулянтов в процессе их седиментации. При R = 1 см и приложении магнитов в положении 1, значение параметра D для образца МФ1К1 в 4 раза выше по отношению к МФ2А, а при расстоянии от цилиндра R = 4 см значение параметра D для образца МФ1К1 в 2 раза выше по отношению к МФ2А. Этот результат можно связать с селективностью и

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 1 2023

Рис. 4. Фото расположения неодимовых магнитов N35 в положениях 1, 2 и 3.

необратимостью процессов адсорбции макромолекул сополимеров K1 и A, входящих в состав M Φ , на поверхности частиц TiO₂. Отмечено влияние положения магнитов по высоте цилиндра на процесс флокуляции: на начальной стадии (положение 1) увеличивается скорость седиментации, а положение 3 влияет на стадию уплотнения осадков. Установленные в работе закономерности флокуляции суспензии диоксида титана могут быть применены для управления свойствами многокомпонентных дисперсных систем с участием ионогенных и неионогенных сополимеров AA и магнитных флокулянтов на их основе.

ЗАКЛЮЧЕНИЕ

В режиме стесненного оседания отмечено влияние флокулирующего поведения магнитных флокулянтов на основе магнетита и ионогенных и неионогенных (со)полимеров АА на процесс седиментации суспензии диоксида титана. Изменяя природу и концентрацию сополимеров АА в магнитном флокулянте, варьируя величину и место наложения магнитного поля двумя неодимовыми магнитами, можно получить высокоэффективный многофункциональный безопасный флокулянт для селективного выделения ценных материалов и разделения биокомпонентов.

Исследование проведено с использованием оборудования Центра коллективного пользования "Наноматериалы и нанотехнологии" Казанского национального исследовательского технологического университета при финансовой поддержке проекта Минобрнауки России в рамках гранта № 075-15-2021-699.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 1 2023

СПИСОК ЛИТЕРАТУРЫ

- Jumadi J., Kamari A., Hargreaves J.S.J., Yusof N. A review of nano-based materials used as flocculants for water treatment // International Journal of Environmental Science and Technology. 2020. V. 17. P. 3571–3594.
- Kobylinska N., Klymchuk D., Shakhovsky A., Khainakova O., Ratushnyak Y., Duplij V., Matvieieva N. Biosynthesis of magnetite and cobalt ferrite nanoparticles using extracts of "hairy" roots: preparation, characterization, estimation for environmental remediation and biological application // RSC Advances. 2021. V. 11. № 43. P. 26974–26987.
- 3. *Першина А.Г., Сазонов А.Э., Мильто И.В.* Использование магнитных наночастиц в биомедицине // Бюллетень сибирской медицины. 2008. Т. 7. № 2. С. 70–78.
- Ghibaudo F., Gerbino E., Copello G.J., Dall'Orto V.C., Gómez-Zavaglia A. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria // Colloids and Surfaces B: Biointerfaces. 2019. V. 180. P. 193–201.
- 5. *El-kharrag R., Abdel Halim S.S., Amin A., Greish Y.E.* Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications // International Journal of Polymeric Materials and Polymeric Biomaterials. 2019. V. 68. № 1–3. P. 73–82.
- Li S.N., Li B., Yu Z.R., Gong L.X., Xia Q.Q., Feng Y., Tang L.C. Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance // Composites Science and Technology. 2020. V. 195. P. 108173.
- Курмангажи Г., Тажибаева С.М., Мусабеков К.Б., Левин И.С., Кузин М.С., Ермакова Л.Э., Ю В.К. Получение дисперсных композиций магнетит-бентонит и адсорбция на них казкаина // Коллоидный журнал. 2021. Т. 83. № 3. С. 320–329.
- 8. Джардималиева Г.И., Иржак В.И., Братская С.Ю., Майоров В.Ю., Привар Ю.О., Касымова Э.Д., Кыдралиева К.А. Стабилизация наночастиц магнетита в среде гуминовых кислот и исследование их сорб-

ционных свойств // Коллоидный журнал. 2020. Т. 82. № 1. С. 11–17.

- 9. *Niculescu A.G., Chircov C., Grumezescu A.M.* Magnetite nanoparticles: synthesis methods–a comparative review // Methods. 2021. V. 199. P. 16–27.
- Ma J., Fu X., Jiang L., Zhu G., Shi J. Magnetic flocculants synthesized by Fe₃O₄ coated with cationic polyacrylamide for high turbid water flocculation // Environmental Science and Pollution Research. 2018. V. 25. № 26. P. 25955–25966.
- 11. Wu W., Wu Z., Yu T., Jiang C., Kim W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications // Science and Technology of Advanced Materials. 2015. V. 16. № 2. Article ID 023501.
- Wang T., Yang W.L., Hong Y., Hou Y.L. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae // Chemical Engineering Journal. 2016. V. 297. P. 304–314.
- 13. Yu W., Wang C., Wang G., Feng Q. Flocculation performance and kinetics of magnetic polyacrylamide microsphere under different magnetic field strengths // Journal of Chemistry. 2020. V. 2020. Article ID 1579424.
- Gu N., Wang C., Zhang J., Shen T. Synthesis and characterization of magnetic poly (acrylamide-co-maleic anhydride) grafted gelatin as a novel heavy metal ions wastewater treatment agent // Desalination and Water Treatment. 2018. V. 116. P. 170–178.
- Wang S., Zhang C., Chang Q. Synthesis of magnetic crosslinked starch-graft-poly (acrylamide)-co-sodium xanthate and its application in removing heavy metal ions // Journal of Experimental Nanoscience. 2017. V. 12. № 1. P. 270–284.
- Мягченков В.А., Баран А.А., Бектуров Е.А., Булидорова Г.В. Полиакриламидные флокулянты. Казань: Изд-во Казанского гос. технол. ун-та, 1998. 288 с.

- Кашина Е.С., Проскурина В.Е., Крупин А.С., Губочкина Д.В., Голдобина С.С., Галяметдинов Ю.Г. Магнитный флокулянт для очистки трансформаторного масла // Вестник технологического университета. Казань. 2021. Т. 24. № 10. С. 5–9.
- 18. Мягченков В.А., Булидорова Г.В., Чуриков Ф.И. Оценка адсорбции и десорбции ионогенных и неионогенных (со)полимеров акриламида на каолине по данным о кинетике вторичной флокуляции // Известия Вузов. Серия: Химия и химическая технология. 1997. Т. 40. № 6. С. 41–44.
- Гервальд А.Ю., Прокопов Н.И., Ширякина Ю.М. Синтез суперпарамагнитных наночастиц магнетита // Вестник МИТХТ им. МВ Ломоносова. 2010. Т. 5. № 3. С.45–49.
- Niculescu A.G., Chircov C., Grumezescu A.M. Magnetite nanoparticles: Synthesis methods–A comparative review // Methods. 2022. V. 199. P. 16–27.
- 21. Shchetinin I.V., Seleznev S.V., Dorofievich I.V. Structure and magnetic properties of nanoparticles of magnetite obtained by mechanochemical synthesis // Metal Science and Heat Treatment. 2021. V. 63. № 1. P. 95–100.
- 22. Nguyen M.D., Tran H.V., Xu S., Lee T.R. Fe₃O₄ Nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications // Applied Sciences. 2021. V. 11. № 23. P. 11301.
- Cursaru L.M., Piticescu R.M., Dragut D.V., Tudor I.A., Kuncser V., Iacob N., Stoiciu F. The influence of synthesis parameters on structural and magnetic properties of iron oxide nanomaterials // Nanomaterials. 2020. V. 10. № 1. P. 85.
- Баран А.А. Полимерсодержащие дисперсные системы / Под ред. А.А. Баран. Киев: Наук. думка, 1986. 204 с.
- Липатов Ю.С., Тодосийчук Т.Т., Чорная В.Н. Адсорбция смесей полимеров из разбавленных и полуразбавленных растворов // Успехи химии. 1995. Т. 64. № 5. С. 497–504.