# О ВЛИЯНИИ ЭФФЕКТА РЕЛАКСАЦИИ ВЯЗКОСТИ ЖИДКОСТИ НА ИНТЕНСИВНОСТЬ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОСЦИЛЛИРУЮЩЕЙ ЗАРЯЖЕННОЙ КАПЛИ

© 2023 г. А. И. Григорьев<sup>1, \*</sup>, Н. Ю. Колбнева<sup>2</sup>, С. О. Ширяева<sup>2</sup>

<sup>1</sup>Институт проблем механики им. А.Ю. Ишлинского РАН, просп. Вернадского, д. 101, к. 1, Москва, 119526 Россия <sup>2</sup>Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, Ярославль, 150000 Россия \*e-mail: grigorai@mail.ru Поступила в редакцию 07.06.2023 г. После доработки 22.06.2023 г. Принята к публикации 22.06.2023 г.

В теоретических асимптотических линейных по малой безразмерной амплитуде осцилляций расчетах исследовано влияние вязкоупругих свойств заряженной капли электропроводной вязкоупругой жидкости на интенсивность ее электромагнитного излучения. Показано, что учет эффекта релаксации вязкости приводит: к снижению величины декремента затухания, определяемого потерями энергии на излучение электромагнитных волн, и интенсивности электромагнитного излучения на высоких частотах; к существенному снижению декремента вязкого затухания мелких облачных капель; к существенной зависимости декремента вязкого затухания от характерного времени релаксации. Обнаружено, что эффект релаксации вязкости жидкости не оказывает заметного влияния на затухающие капиллярные осцилляции и электромагнитное излучение дождевых капель. На критические условия реализации электростатической неустойчивости капли по отношению к собственному заряду вязкоупругость, как и вязкость жидкости влияния не оказывает.

*Ключевые слова:* вязкоупругая жидкость, капля, заряд, электромагнитное излучение **DOI:** 10.31857/S0023291223600438, **EDN:** YXIWRJ

#### введение

Исследование электромагнитного излучения, возникающего при капиллярных осцилляциях капли, заряженной собственным или индуцированным внешним электрическим полем зарядами, представляет значительный интерес в связи с широким спектром разнообразных приложений в геофизике, технической физике, гидрометеорологии [1-3]. Впервые феномен излучения электромагнитных волн осциллирующей облачной капли, связанный с проблемами радиолокационного зондирования грозовых облаков, обсуждался в [4, 5] с использованием гидродинамической модели осциллирующей заряженной капли идеальной проводящей жидкости. Важность обсужлаемой проблемы обуславливает появление новых работ [6]. Однако вопросы, связанные с наличием у реальной жидкости вязких и вязкоупругих свойств, изучены недостаточно полно. В связи со сказанным целесообразно провести исследование влияния эффекта релаксации вязкости на электромагнитное излучение осциллирующей заряженной капли воды. Проблема не умозрительная, а реальная, поскольку температура капель воды в облаках достигает минус двадцати градусов, и капли воды становятся переохлажденными, т.е. находятся на грани замерзания и приобретают вязкоупругие свойства.

Хорошо известно, что жидкая капля обладает упругими свойствами [7, 8], если характерное гидродинамическое время осцилляций ее поверхности много больше характерных молекулярных времен  $10^{-12}-10^{-11}$  (при комнатных температурах [8]). Рассматривая эффект релаксации вязкости, отметим, что его физическая природа заключается в превращении накопленной энергии внешних силовых воздействий на каплю (энергии упругих деформаций) в кинетическую энергию поля скоростей течения жидкости с последующей диссипацией в тепловую энергию за счет вязкости [9].

Собственно говоря, эффект релаксации вязкости проявляется в том, что в результате кратковременных внешних силовых воздействий жидкая среда капли упруго деформируется, а возникающие после прекращения этих воздействий сдвиговые напряжения затухают с временем релаксации  $\tau \sim 10^{-5}$  с [10], превышающим характерное время внешних воздействий на каплю.

Описание вязкоупругих свойств жидкости достигается введением коэффициента комплексной кинематической вязкости v, зависящей от частоты  $\omega_n$ , согласно известной формуле Максвелла [7, 8, 11]:

$$\mathbf{v} = \frac{\mathbf{v}_0}{1 + i\omega_n \tau};\tag{1}$$

где *i* — мнимая единица,  $v_0$  — коэффициент кинематической вязкости для нулевой частоты внешнего воздействия,  $\tau$  — характерное время релаксации вязкости (время, за которое возникающие в жидкости упругие деформации возвращаются к нулевому уровню). Согласно [12], для проводимого качественного анализа примем  $\tau \sim 10^{-5}$  с. Здесь предполагается, что временная зависимость амплитуд капиллярных осцилляций капли изменяется по гармоническому закону: ~exp(*i* $\omega_n t$ ).

Если в уравнении (1) частота капиллярных осцилляций *n*-ой моды (частота внешнего воздействия) удовлетворяет условию  $\omega_n \tau \ll 1$ , то вязкая жидкость не обладает упругими свойствами. Если же выполняется условие  $\omega_n \tau \gg 1$ , то получаем весьма вязкую жидкость, обладающую свойствами твердого тела.

В анализируемом случае при возбуждении основной колебательной моды n = 2 частота осцилляций облачных капель размером от R = 3 мкм до R = 30 мкм изменяется в диапазоне от  $\omega_2 = 4.64 \times 10^6$  рад/с до  $\omega_2 = 147 \times 10^3$  рад/с. Можно показать, что при характерном времени релаксации  $\tau = 1 \times 10^{-5}$  с величина произведения  $\omega_n \tau$  принимает значения от  $\omega_n \tau \approx 1.47$  при R = 30 мкм до  $\omega_n \tau \approx 46.4$  при R = 3 мкм. Собственно говоря, для облачных капель величина  $\omega_n \tau > 1$ , что позволяет считать жидкость вязкоупругой.

Кроме того, оценка периода *T* осцилляций облачных капель (периода внешнего воздействия) дает  $T = 1.36 \times 10^{-6}$  с при R = 3 мкм и  $T = 4.27 \times 10^{-5}$  с при R = 30 мкм. Таким образом, можно утверждать, что периоды осцилляций облачных капель велики по сравнению с молекулярными времена-ми  $(10^{-12}-10^{-11}$  с при комнатных температурах), поэтому вязкую жидкость можно считать ньютоновской, для которой применимо уравнение Навье–Стокса.

Следует отметить, что выражение (1) учитывает молекулярную структуру реальной жидкости, обладающей определенными скоростями передачи межмолекулярного взаимодействия.

# ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Пусть имеется изолированная заряженная сферическая капля радиуса R вязкой несжимаемой проводящей жидкости, обладающая зарядом Q. Обозначим массовую плотность жидкости  $\rho$ , коэффициент поверхностного натяжения –  $\sigma$ , коэффициент кинематической вязкости –  $\nu$ . Для простоты последующих вычислений в качестве внешней среды примем вакуум (с диэлектрической проницаемостью  $\varepsilon_{ex} = 1$ ).

Все рассмотрение проведем в сферической системе координат (r,  $\theta$ ,  $\phi$ ), начало которой расположим в центре масс равновесной капли. Имея в виду качественное исследование, ограничимся осесимметричной постановкой задачи, т.е. в функциях будем пренебрегать зависимостью от азимутальной координаты  $\phi$ .

Уравнение поверхности капли, возмущенной капиллярным волновым движением, в произвольный момент времени *t* запишем в виде:

$$r(\theta, t) = R + \xi(\theta, t), \qquad (2)$$

где  $\xi(\theta, t)$  описывает возмущение равновесной сферической формы, обусловленное капиллярными осцилляциями в результате внешних силовых воздействий (коагуляция, дробление, трение о воздух, столкновение с крупными твердыми частицами, а также разными по размеру каплями), амплитуда может увеличиваться до величины ~*R* [13].

Для проводящей жидкости предполагается, что характерное гидродинамическое время, определяемое периодом основной моды капиллярных осцилляций капли, существенно превосходит характерное время перераспределения заряда:

$$\left(\frac{R^{3}\rho}{\sigma}\right)^{1/2} \gg \frac{\epsilon_{in}}{4\pi\gamma}$$
, где  $\gamma$  – удельная проводимость,

 $\varepsilon_{\rm in}$  — диэлектрическая проницаемость жидкости. Отметим, что ускоренное движение поверхностного заряда *Q* капли при капиллярных осцилляциях вызывает излучение электромагнитных волн [4–6].

В качестве малого параметра задачи примем  $\varepsilon \equiv \max |\xi| / R \ll 1$ , имеющего смысл безразмерной амплитуды осцилляций капли. Положим, что поле скоростей движения жидкости  $\vec{V}(r, \theta, t)$  и искажение равновесной сферической формы  $\xi(\theta, t)$  являются величинами одного порядка малости  $|\vec{V}(r, \theta, t)| \sim |\xi(\theta, t)| \sim \varepsilon$ .

### МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Математическая формулировка задачи о капиллярных осцилляциях заряженной электропроводной капли вязкой жидкости и об оценке интенсивности возникающего при этом электромагнитного излучения состоит из уравнения Навье–Стокса (уравнения движения вязкой жидкости):

$$\frac{\partial \vec{V}(r,\theta,t)}{\partial t} + \left(\vec{V}(r,\theta,t)\nabla\right)\vec{V}(r,\theta,t) = = -\frac{1}{\rho}\nabla P(r,\theta,t) + \nu\Delta\vec{V}(r,\theta,t);$$
(3)

 $P(\vec{r},t)$  – давление внутри капли;

уравнения непрерывности:

$$\operatorname{div} V(r, \theta, t) = 0; \tag{4}$$

волнового уравнения и уравнения непрерывности электрического поля, описываемого напряженностью  $\vec{E}$ :

$$\Delta \vec{E}(r,\theta,t) - \frac{1}{c^2} \frac{\partial^2 \vec{E}(r,\theta,t)}{\partial t^2} = 0; \quad \operatorname{div} \vec{E}(r,\theta,t) = 0; \quad (5)$$

с условием ограниченности напряженности электрического поля  $\vec{E}(r, \theta, t)$  на бесконечном удалении от поверхности капли:

$$r \to \infty$$
:  $\vec{E}(r, \theta, t) \to 0,$  (6)

и поля скоростей  $\vec{V}(r, \theta, t)$  в начале координат:

$$r \to 0$$
:  $\dot{V}(r, \theta, t) \to 0$ . (7)

Условие (6) соответствует расходящейся электромагнитной волне, убывающей при  $r \to \infty$ .

Потребуем, чтобы на свободной поверхности капли  $F(r, \theta, t) \equiv r - R - \xi(\theta, t) = 0$  выполнялись граничные условия:

кинематическое:

$$\frac{\partial F(r,\theta,t)}{\partial t} + \vec{V}(r,\theta,t)\nabla F(r,\theta,t) = 0;$$
(8)

динамическое для касательной компоненты тензора напряжений:

$$\vec{\tau}(r,\theta,t)(\vec{n}(r,\theta,t)\nabla)V(r,\theta,t) + + \vec{n}(r,\theta,t)(\vec{\tau}(r,\theta,t)\nabla)\vec{V}(r,\theta,t) = 0;$$
(9)

 $\vec{n}$ ,  $\vec{\tau}$  — единичные векторы нормали и касательной к свободной поверхности капли (2);

динамическое для нормальной компоненты тензора напряжений:

$$P(r,\theta,t) - 2\rho \nu \vec{n} (r,\theta,t) (\vec{n} (r,\theta,t) \nabla) \vec{V} (r,\theta,t) + P_q(r,\theta,t) = P_\sigma(r,\theta,t);$$
(10)

 $P_q = \vec{E}^2 / 8\pi$  — давление электрических сил;  $P_{\sigma} = \sigma \operatorname{div} \vec{n}$  давление капиллярных сил;

а также условие эквипотенциальности:

$$\left(\vec{\tau}(r,\theta,t)\vec{E}(r,\theta,t)\right) = 0. \tag{11}$$

Кроме того, введем дополнительные интегральные условия, исходя из очевидных требова-

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 4 2023

ний сохранения объема капли при ее осцилляциях и отсутствия движения центра масс:

$$\int_{V} r^{2} dr \sin\theta d\theta d\phi = \frac{4}{3} \pi R^{3}; \quad \int_{V} \vec{r} r^{2} dr \sin\theta d\theta d\phi = 0; \quad (12)$$
$$V = [0 \le r \le R + \xi(\theta, t), 0 \le \theta \le \pi, 0 \le \phi \le 2\pi];$$

А также постоянства полного поверхностного заряда:

$$\frac{1}{4\pi} \oint_{S} \left( \vec{n} \left( r, \theta, t \right) \vec{E} \left( r, \theta, t \right) \right) dS = Q;$$

$$S = [r = R + \xi(\theta, t), 0 \le \theta \le \pi, 0 \le \varphi \le 2\pi].$$
(13)

Здесь условия (12) накладывают ограничения снизу на спектр колебательных мод осциллирующей капли, принимающих участие в формировании деформации  $\xi(\theta, t)$  равновесной сферической капли. Это означает, что в расчетах первого порядка малости по є исключается возбуждение центрально симметричной (нулевой) моды n = 0, отвечающей за радиальные пульсации капли, и трансляционной (первой) моды n = 1, соответствующей поступательному движению капли [14].

### НАЧАЛО АСИМПТОТИЧЕСКОГО АНАЛИЗА

Решение выписанной задачи (3), (4), (5) с граничными и дополнительными условиями (6)— (13) будем искать методом прямого разложения в рамках теории возмущений [15] в линейном приближении по малому параметру  $\varepsilon \equiv |\xi|/R \ll 1$ , для чего все искомые функции запишем в виде асимптотических разложений по  $\varepsilon$ :

$$\begin{aligned} \xi(\theta,t) &= \xi^{(1)}(\theta,t) + O(\epsilon^{2}); \\ \vec{V}(r,\theta,t) &= \vec{V}^{(1)}(r,\theta,t) + O(\epsilon^{2}); \\ \vec{E}(r,\theta,t) &= \vec{E}^{(0)}(r,\theta) + \vec{E}^{(1)}(r,\theta,t) + O(\epsilon^{2}); \\ P(r,\theta,t) &= P^{(0)}(r,\theta) + P^{(1)}(r,\theta,t) + O(\epsilon^{2}); \\ P_{q}(r,\theta,t) &= P_{q}^{(0)}(r,\theta) + P_{q}^{(1)}(r,\theta,t) + O(\epsilon^{2}); \\ P_{\sigma}(r,\theta,t) &= P_{\sigma}^{(0)}(r,\theta) + P_{\sigma}^{(1)}(r,\theta,t) + O(\epsilon^{2}); \end{aligned}$$
(14)

где верхний индекс в скобках указывает на порядок малости соответствующей величины по  $\varepsilon$ .

Обратим внимание, что в граничных условиях (9), (10), (11), (13) требуется выписать в явном виде орты  $\vec{n}(r, \theta, t)$ ,  $\vec{\tau}(r, \theta, t)$ .

Для вычисления нормального орта  $\vec{n}(r, \theta, t)$  к свободной поверхности капли  $F(r, \theta, t) = 0$  воспользуемся общим соотношением:  $\vec{n}(r, \theta, t) = \nabla F / |\nabla F|$ .

Ограничиваясь слагаемыми первого порядка малости по є, найдем:

$$\vec{n}(r,\theta,t) = \vec{e}_r - \frac{1}{r} \frac{\partial \xi(\theta,t)}{\partial \theta} \vec{e}_{\theta}.$$
(15)

Принимая во внимание, что касательный орт  $\vec{\tau}(r,\theta,t)$  в общем случае распадается на орты касательных к параллелям  $\vec{\tau}_{\phi}(r,\theta,t)$  и меридианам  $\vec{\tau}_{\theta}(r,\theta,t)$ , и учитывая, что они должны иметь единичную длину, получим:  $\vec{\tau}_{\phi} = \vec{\tau}_{\phi}^* / |\vec{\tau}_{\phi}^*|$ ,  $\vec{\tau}_{\theta} = \vec{\tau}_{\theta}^* / |\vec{\tau}_{\phi}^*|$ .

Выбирая в качестве произвольного постоянного вектора орт оси симметрии  $\vec{e}_z$  из векторного произведения  $\vec{\tau}_{\phi}^* = \vec{e}_z \times \vec{n}$ , несложно показать, что в линейном по є приближении единичный вектор касательной к параллелям  $\vec{\tau}_{\phi}$  совпадает с азимутальным ортом  $\vec{e}_{\phi}$  сферической системы координат:

$$\vec{\tau}_{\varphi} = \vec{e}_{\varphi}.$$
 (16)

Чтобы записать единичный вектор касательной

к меридианам  $\vec{\tau}_{\theta}$ , применим формулу  $\vec{\tau}_{\theta}^* = \vec{\tau}_{\phi}^* \times \vec{n}$ , из которой в первом порядке малости по  $\varepsilon$  найдем:

$$\vec{\tau}_{\theta} = \frac{1}{r} \frac{\partial \xi(\theta, t)}{\partial \theta} \vec{e}_r + \vec{e}_{\theta}.$$
(17)

В (15)–(17)  $\vec{e}_r, \vec{e}_{\theta}, \vec{e}_{\phi}$  – орты сферической системы координат.

### РЕШЕНИЕ ЗАДАЧИ НУЛЕВОГО ПОРЯДКА ПО МАЛОМУ ПАРАМЕТРУ

Подстановка разложений (14) в полную математическую формулировку задачи (3)–(13) позволяет выделить задачу нулевого порядка малости по є, описывающую равновесное состояние системы:

$$\operatorname{rot} \vec{E}^{(0)} = 0; \quad \operatorname{div} \vec{E}^{(0)} = 0; \\ r \to \infty; \quad \vec{E}^{(0)} \to 0; \\ r \to R; \quad P_1^{(0)}(r,\theta) + P_q^{(0)}(r,\theta) = P_{\sigma}^{(0)}(r,\theta); \\ P^{(0)} = P_0; \quad P_q^{(0)} = \frac{\left(\vec{E}^{(0)}\right)^2}{8\pi}; \quad P_{\sigma}^{(0)}\sigma\operatorname{div}\vec{n}_0; \quad \vec{n}_0 = \vec{e}_r; \\ r \to R; \quad \left(\vec{\tau}_0\vec{E}^{(0)}\right) = 0; \\ \int_V r^2 dr\sin\theta d\theta d\phi = \frac{4}{3}\pi R^3; \quad \int_V \vec{r}r^2 dr\sin\theta d\theta d\phi = 0; \\ V = [0 \le r \le R, 0 \le \theta \le \pi, 0 \le \phi \le 2\pi]; \\ \frac{1}{4\pi} \oint_S \left(\vec{n}_0\vec{E}^{(0)}\right) dS = Q; \\ S = [r = R, 0 \le \theta \le \pi, 0 \le \phi \le 2\pi]; \end{cases}$$

решение которой легко находится:

$$\vec{E}^{(0)} = \frac{Q}{r^2} \vec{e}_r; \quad P_0 = \frac{2\sigma}{R} - \frac{Q^2}{8\pi R^4}.$$
 (18)

В выше записанных уравнениях  $P_0$  – постоянное давление в капле,  $\vec{n}_0$  и  $\vec{\tau}_0$  – орты нормали и касательной к равновесной поверхности сферы, имеющие вид:  $\vec{n}_0 = \vec{e}_r$ ,  $\vec{\tau}_{0\theta} = \vec{e}_{\theta}$ ,  $\vec{\tau}_{0\phi} = \vec{e}_{\phi}$ , где  $\vec{\tau}_{0\phi}$ ,  $\vec{\tau}_{0\theta}$  – единичные векторы касательных к меридианам и параллелям невозмущенной сферы.

В итоге несложно убедиться, что равновесная форма поверхности капли совпадает со сферической.

### РЕШЕНИЕ ГИДРОДИНАМИЧЕСКОЙ ЧАСТИ ЗАДАЧИ ПЕРВОГО ПОРЯКА МАЛОСТИ ПО є

Подставляя асимптотические разложения (14) в исходную систему уравнений (3), (4), (8)–(10), (12) и собирая слагаемые, содержащие малый параметр є в первой степени, сформулируем гидродинамическую задачу первого порядка:

$$\frac{\partial V(r,\theta,t)}{\partial t} = -\frac{1}{\rho} \nabla P^{(1)}(r,\theta,t) + \nu \Delta \vec{V}(r,\theta,t); \quad (19)$$

$$\operatorname{div}\vec{V}(r,\theta,t) = 0; \qquad (20)$$

$$r = R: -\frac{\partial \xi(\theta, t)}{\partial t} + (\vec{V}(r, \theta, t)\vec{e}_r) = 0; \qquad (21)$$

$$\vec{\tau}_0 \left( \vec{n}_0 \nabla \right) \vec{V} \left( r, \theta, t \right) + \vec{n}_0 \left( \vec{\tau}_0 \nabla \right) \vec{V} \left( r, \theta, t \right) = 0; \qquad (22)$$

(1)

$$P^{(1)}(r,\theta,t) - 2\rho \nu \vec{n}_{0}(\vec{n}_{0}\nabla)V(r,\theta,t) + P^{(1)}_{q}(r,\theta,t) = P^{(1)}_{\sigma}(r,\theta,t);$$

$$3R^{2}\int_{0}^{\pi} \mathcal{E}(\theta,t)\sin\theta d\theta = 0;$$
(23)

$$4R^{3}\int_{0}^{\pi}\xi(\theta,t)\cos\theta\sin\theta d\theta = 0.$$
(24)

Заметим, что в линеаризованные граничные условия (21)—(23) входит величина  $\vec{V}(r, \theta, t)$  первого порядка малости, поэтому в качестве единичных векторов  $\vec{n}$   $\vec{\tau}$  выбраны орты нормали  $\vec{n}_0$  касательной  $\vec{\tau}_0$  к невозмущенной поверхности сферы.

Для отыскания поля скоростей движения вязкой жидкости  $\vec{V}(r, \theta, t)$  воспользуемся методом операторной скаляризации, подробно разобранным в [16]. Представим  $\vec{V}(r, \theta, t)$  в виде суммы трех ортогональных полей:

$$\vec{V}(r,\theta,t) = \sum_{j=1}^{3} \vec{N}_{j} \psi_{j}(r,\theta,t); \ (j=1,2,3);$$
(25)

где  $\Psi_j$  — неизвестные скалярные функции,  $\bar{N}_j$  — векторные дифференциальные операторы, имеющие вид:

$$\vec{N}_1 \equiv \nabla; \quad \vec{N}_2 \equiv \vec{N}_1 \times \vec{r} \equiv \nabla \times \vec{r}; 
\vec{N}_3 \equiv \vec{N}_1 \times \vec{N}_2 \equiv \nabla \times (\nabla \times \vec{r}).$$
(26)

Иначе говоря, поле скоростей  $\vec{V}(r, \theta, t)$  записывается в виде суперпозиции потенциальной и вихревой компонент течения жидкости: оператор  $\vec{N}_1$  выделяет потенциальную составляющую, а операторы  $\vec{N}_2$ ,  $\vec{N}_3$  – вихревые: тороидальную и полоидальную. Вихревая часть движения связана с вязкостью реальной жидкости.

Введем операторы  $\vec{N}_{j}^{+}$ , эрмитово сопряженные операторам  $\vec{N}_{j}$  (26), выражаемые соотношениями:

$$\vec{N}_1^+ \equiv -\nabla; \quad \vec{N}_2^+ \equiv \vec{r} \times \nabla; \quad \vec{N}_3^+ \equiv (\vec{r} \times \nabla) \times \nabla;$$
 (27)

 $\vec{r}$  – радиус–вектор; верхний индекс "+" указывает на эрмитово сопряжение. При этом выписанные операторы  $\vec{N}_j$ ,  $\vec{N}_j^+$  подчиняются условиям ортогональности:

$$\left(\vec{N}_{j}^{+}\vec{N}_{m}\right)=0; \quad (j\neq m); \tag{28}$$

и условиям коммутативности с оператором Лапласа ( $\Delta$ ):

$$\Delta \vec{N}_i = \vec{N}_i \Delta. \tag{29}$$

Подстановка разложения (25) в уравнения Навье—Стокса (19) и непрерывности (20) при использовании свойств операторов (28), (29) позволяет получить уравнения для независимых скалярных функций  $\psi_i(r, \theta, t)$ :

$$\Delta \Psi_{j}(r,\theta,t) - \frac{1}{\nu} (1 - \delta_{1j}) \frac{\partial \Psi_{j}(r,\theta,t)}{\partial t} = 0; \qquad (30)$$
$$(j = 1, 2, 3);$$

и выражение для поправки к давлению в капле, связанной с возмущением  $\xi(\theta, t)$ :

$$P(r, \theta, t) = -\rho \frac{\partial \psi_1(r, \theta, t)}{\partial t}; \qquad (31)$$

где  $\delta_{1j}$  – дельта-символ Кронекера.

Перепишем теперь граничные условия (21)– (23) в терминах проекций вектора поля скоростей  $V_r$ ,  $V_{\theta}$ ,  $V_{\phi}$  на орты сферической системы координат. В итоге, кинематическое (21) и динамическое условия для нормальной составляющей тензора напряжений (23) граничные условия представим в виде:

$$r = R: -\frac{\partial \xi(\theta, t)}{\partial t} + V_r(r, \theta, t) = 0; \qquad (32)$$

$$P^{(1)}(r,\theta,t) - 2\rho v \frac{\partial V_r(r,\theta,t)}{\partial r} + P_q^{(1)}(r,\theta,t) = P_{\sigma}^{(1)}(r,\theta,t);$$
(33)

а динамическое условие (22) для касательной компоненты тензора напряжений распадется на два соотношения:

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 4 2023

первое для  $\vec{\tau}_{0\theta} = \vec{e}_{\theta}$ :

$$r = R: \quad \frac{\partial V_{\theta}(r,\theta,t)}{\partial r} + \frac{1}{r} \frac{\partial V_{r}(r,\theta,t)}{\partial \theta} - \frac{1}{r} V_{\theta}(r,\theta,t) = 0; (34)$$
  
BTOPOGE LIJS  $\vec{\tau}_{0:n} = \vec{e}_{n}:$ 

$$r = R: \quad \frac{\partial V_{\varphi}(r,\theta,t)}{\partial r} - \frac{1}{r} V_{\varphi}(r,\theta,t) = 0. \tag{35}$$

Выражая составляющие  $V_r$ ,  $V_{\theta}$ ,  $V_{\phi}$  вектора скорости  $\vec{V}(r, \theta, t)$  в сферической системе координат через скалярные функции  $\psi_i$ :

$$V_{r}(r,\theta,t) = \frac{\partial \psi_{1}(r,\theta,t)}{\partial r} - \frac{1}{r} \hat{L} \psi_{3}(r,\theta,t);$$
$$\hat{L} \equiv \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left( \sin\theta \frac{\partial}{\partial \theta} \right);$$
$$V_{\theta}(r,\theta,t) = \frac{1}{r} \frac{\partial \psi_{1}(r,\theta,t)}{\partial \theta} + \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \psi_{3}(r,\theta,t)}{\partial \theta} \right);$$
$$V_{\phi}(r,\theta,t) = -\frac{\partial \psi_{2}(r,\theta,t)}{\partial \theta};$$

приведем граничные условия (32), (33), (34), (35) к виду:

$$r = R: -\frac{\partial \zeta(\theta, t)}{\partial t} + \frac{\partial \Psi_{1}(r, \theta, t)}{\partial r} - \frac{1}{R} \hat{L} \Psi_{3}(r, \theta, t) = 0; (36)$$

$$P^{(1)}(r, \theta, t) - 2\rho v \left( \frac{\partial^{2} \Psi_{1}(r, \theta, t)}{\partial r^{2}} - \hat{L} \frac{\partial}{\partial r} \left( \frac{\Psi_{3}(r, \theta, t)}{r} \right) \right) + (37)$$

$$+ P_{q}^{(1)}(r, \theta, t) = P_{\sigma}^{(1)}(r, \theta, t);$$

$$\text{для } \vec{\tau}_{0\theta} = \vec{e}_{\theta}: 2 \frac{\partial}{\partial r} \left( \frac{\Psi_{1}(r, \theta, t)}{r} \right) - (38)$$

$$- \frac{1}{R^{2}} (2 + \hat{L}) \Psi_{3}(r, \theta, t) + \frac{\partial^{2} \Psi_{3}(r, \theta, t)}{\partial r^{2}} = 0;$$

$$\text{для } \vec{\tau}_{0\phi} = \vec{e}_{\phi}: r \frac{\partial}{\partial r} \left( \frac{\Psi_{2}(r, \theta, t)}{r} \right) = 0.$$

$$(39)$$

В (37) выражения для добавок к давлениям  $P_q^{(1)}$ ,  $P_{\sigma}^{(1)}$  в линейном приближении по безразмерной амплитуде осцилляций є ищутся в виде:

$$P_{q}^{(1)} = \frac{\varepsilon_{ex}}{8\pi} \left( \frac{\partial}{\partial r} (\vec{E}^{(0)})^{2} \xi(\theta, t) + 2\vec{E}^{(0)} \vec{E}^{(1)} \right)^{2}; \quad (40)$$

$$P_{\sigma}^{(1)} = \frac{\sigma}{R} \left[ -\left(2 + \hat{L}\right) \frac{\xi(\theta, t)}{R} \right]; \tag{41}$$

где  $\hat{L}$  — угловая часть оператора Лапласа в сферических координатах.

Отметим, что при выводе выражений (37), (38) было учтено свойство  $\vec{N}_2^+ \vec{N}_2 = \hat{L}$ 16].

Принимая во внимание решение задачи об излучении электромагнитных волн [7], временну́ю зависимость функций  $\psi_j(r, \theta, t), \xi(\theta, t)$  примем экспоненциальной:

$$\Psi_j(r,\theta,t) \sim \exp(i\omega_n t), \quad \xi(\theta,t) \sim \exp(i\omega_n t), \quad (42)$$

где  $\omega_n$  — частота *n*-моды капиллярных осцилляций капли, в общем случае комплексная; реальная ее часть определяет собственную частоту осцилляций, а мнимая часть — декремент затухания или инкремент капиллярной электростатической неустойчивости.

Тогда решения (30), подчиняющиеся условию ограниченности (7), будем искать в виде рядов по осесимметричным полиномам Лежандра [17, 18]:

$$\Psi_{1}(r,\theta,t) = \sum_{n=0}^{\infty} A_{n} \exp\left(i\omega_{n}t\right) r^{n} P_{n}(\mu); \qquad (43)$$

$$\psi_{j}(r,\theta,t) = \sum_{n=0}^{\infty} B_{nj} \exp(i\omega_{n}t) I_{n} \left(r \sqrt{\frac{i\omega_{n}}{\nu}}\right) P_{n}(\mu); \quad (44)$$
$$(j=2;3).$$

В выражении (44) нижний индекс *j* в коэффициенте  $B_{nj}$  указывает на вихревую тороидальную (*j* = 2) или полоидальную (*j* = 3) составляющую потенциала поля скоростей течения жидкости в капле.

Ясно, что функция  $\xi(\theta, t)$  связана с  $\psi_j(r, \theta, t)$  кинематическим граничным условием (36), поэтому возмущение  $\xi(\theta, t)$  естественно представить в виде:

$$\xi(\theta, t) = \sum_{n=2}^{\infty} M_n \exp(i\omega_n t) P_n(\mu); \qquad (45)$$

где в силу дополнительных условий (24) суммирование по n начинается с n = 2.

В (42), (44) *i* – мнимая единица;  $P_n(\mu)$  – полином Лежандра *n*-ого порядка [19];  $\mu \equiv \cos \theta$ ;  $I_n(x)$  – модифицированная функция Бесселя первого рода [20]; *n* – целое положительное число. Коэффициенты разложений  $A_n$ ,  $B_{nj}$ ,  $M_n$  являются малыми величинами первого порядка по  $\varepsilon$ .

Для того чтобы связать амплитудные коэффициенты  $A_n$ ,  $B_{n3}$  с амплитудами капиллярных осцилляций  $M_n$ , используем граничные условия (36), (38). Подставляя в них разложения (43)– (45), получим соотношения:

$$A_{n} = M_{n} \frac{i\omega_{n} \left( f\left(R\sqrt{\frac{i\omega_{n}}{v}}\right) - 1 - \frac{2}{x^{2}}(n-1)(n+1) \right)}{nR^{n-1} \left( f\left(R\sqrt{\frac{i\omega_{n}}{v}}\right) - 1 \right)}; (46)$$

$$B_{n3} = M_n \frac{2\nu(n-1)}{RnI_n \left(R\sqrt{\frac{i\omega_n}{\nu}}\right) \left(f\left(R\sqrt{\frac{i\omega_n}{\nu}}\right) - 1\right)}; \quad (47)$$

где для удобства введено обозначение:  $f(x) \equiv \frac{2I_{n+1}(x)}{xI_n(x)}; x \equiv R \sqrt{\frac{i\omega_n}{v}}.$ 

Граничное условие (39) при подстановке в него разложения (43) и j = 2 дает выражение:

$$B_{n2}\left[\sqrt{\frac{i\omega_n}{\nu}}I_{n+1}\left(R\sqrt{\frac{i\omega_n}{\nu}}\right) + \frac{1}{R}(n-1)I_n\left(R\sqrt{\frac{i\omega_n}{\nu}}\right)\right] = 0;$$

которое справедливо при  $B_{n2} = 0$ , что соответствует отсутствию тороидальной компоненты поля скоростей, связанного со скалярной функцией  $\psi_2(r, \theta, t)$  при капиллярных осцилляциях капли, либо при равенстве нулю выражения в квадратных скобках, имеющее тривиальное решение. Из этого следует, что в линейном приближении по є тороидальная составляющая течения жидкости в капле не оказывает влияния на формирование возмущения  $\xi(\theta, t)$  равновесной сферы. В связи с этим в дальнейшем анализе  $\psi_2(r, \theta, t)$  опустим.

При использовании (43), (46) решение (30) для поправки первого порядка малости к давлению внутри капли  $P^{(1)}$  (см. (31)) представляется в виде:

$$P^{(1)} =$$

$$= \rho R \sum_{n=2}^{\infty} M_n \frac{\omega_n^2 \left( f\left( R \sqrt{\frac{i\omega_n}{\nu}} \right) - \frac{2}{x^2} (n-1)(n+1) \right)}{n f\left( R \sqrt{\frac{i\omega_n}{\nu}} \right)} \times (48)$$

$$\times \exp(i\omega_n t) P_n(\mu).$$

Пользуясь (41), (45), несложно найти линейную по є компоненту давления капиллярных сил под искаженной капиллярным волновым движением сферической поверхностью:

$$P_{\sigma}^{(1)} = \frac{\sigma}{R^2} \sum_{n=2}^{\infty} (n-1)(n+2) M_n \exp(i\omega_n t) P_n(\mu).$$
(49)

Очевидно, что для отыскания поправки  $P_q^{(1)}$  к давлению электрического поля (40) собственного заряда на свободную поверхность капли возникает необходимость в нахождении добавки к напряженности  $\vec{E}^{(1)}$ , вызванной возмущением  $\xi(\theta, t)$ . Тогда с учетом ортов касательной (16), (17) и внешней нормали (15) из системы уравнений (5), (6), (11), (13) выпишем отдельную электрическую задачу первого порядка по  $\varepsilon$ :

$$\Delta \vec{E}^{(1)}(r,\theta,t) - \frac{1}{c^2} \frac{\partial^2 \vec{E}^{(1)}(r,\theta,t)}{\partial t^2} = 0;$$

$$\operatorname{div} \vec{E}^{(1)}(r,\theta,t) = 0;$$
(50)

$$r \to \infty$$
:  $\vec{E}^{(1)}(r, \theta, t) \to 0;$  (51)

$$r = R; \quad \vec{\tau} = \vec{\tau}_{\theta}; \quad \frac{Q}{R^3} \frac{\partial \xi(\theta, t)}{\partial \theta} + E_{\theta}^{(1)} = 0; \quad (52)$$

$$\vec{\tau} = \vec{\tau}_{\varphi}$$
:  $E_{\varphi}^{(1)} = 0;$  (53)

$$\int_{0}^{\pi} E_{r}^{(1)} \sin\theta d\theta = 0; \qquad (54)$$

где c — скорость распространения электромагнитных волн в вакууме,  $E_r^{(1)}$ ,  $E_{\theta}^{(1)}$ ,  $E_{\phi}^{(1)}$  — проекции вектора  $\vec{E}^{(1)}$  на орты сферической системы координат.

Следуя методу скаляризации [16], представим напряженность электрического поля  $\vec{E}^{(1)}$  в виде разложения по векторным ортогональным операторам  $\vec{N}_i$ :

$$\vec{E}^{(1)} = \sum_{j=1}^{3} \vec{N}_{j} \Phi_{j}; \quad (j = 1, 2, 3);$$
 (55)

где  $\Phi_j$  — произвольные скалярные функции, а дифференциальные операторы  $\vec{N}_j$  описываются соотношениями (27) и удовлетворяют свойствам (28), (29).

Подставляя векторное равенство (55) в уравнение непрерывности (50) и принимая во внимание условие ортогональности (28), для скалярной функции  $\Phi_1$  получим уравнение Лапласа:

$$\Delta \Phi_1 = 0. \tag{56}$$

Для скаляризации векторного волнового уравнения (50) подставим в него разложение (55) и используем условие коммутативности с оператором Лапласа (29). В результате имеем систему трех независимых уравнений:

$$\sum_{j=1}^{3} \vec{N}_{j} \left\{ \Delta \Phi_{j} - \frac{1}{c^{2}} \frac{\partial^{2} \Phi_{j}}{\partial t^{2}} \right\} = 0; \quad (j = 1, 2, 3).$$

Умножим эти выражения слева последовательно на эрмитово сопряженные операторы  $\vec{N}_{j}^{+}$ (j = 1, 2, 3) и при помощи свойства ортогональности (28) получим уравнения Гельмгольца:

$$\Delta \Phi_j + k^2 \Phi_j = 0; \quad k = \frac{\operatorname{Re} \omega_n}{c};$$

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 4 2023

при выводе которых учтена гармоническая зависимость величин  $\Phi_j$  от времени:  $\Phi_j \sim \exp(i\omega_n t)$ k – волновое число; c – скорость распространения электромагнитной волны в вакууме.

Зная (56), из последнего уравнения для значения индекса j = 1 придем к обнулению функции  $\Phi_1$ . Тогда добавка к напряженности поля  $\vec{E}^{(1)}$ , вызванная капиллярными осцилляциями капли, содержит лишь вихревую часть:

$$\vec{E}^{(1)} = \vec{N}_2 \Phi_2 + \vec{N}_3 \Phi_3.$$

Пользуясь явным видом операторов  $\vec{N}_2$ ,  $\vec{N}_3$ , перепишем составляющие вектора  $\vec{E}^{(1)}$  в сферической системе координат, выраженные через скалярные функции  $\Phi_2$ ,  $\Phi_3$ :

$$\vec{N}_2 \Phi_2 \equiv -\frac{\partial \Phi_2}{\partial \theta} \vec{e}_{\varphi}; \tag{57}$$

$$\vec{N}_3 \Phi_3 \equiv -\frac{1}{r} \hat{L} \Phi_3 \vec{e}_r + \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Phi_3}{\partial \theta} \vec{e}_{\theta}.$$
 (58)

Решения уравнений Гельмгольца при j = 2, 3,удовлетворяющие условию ограниченности (51), ищутся в виде [17, 18]:

$$\Phi_{j} = \sum_{n=0}^{\infty} D_{nj} \exp(i\omega_{n}t) h_{n}^{(2)}(kr) P_{n}(\mu); \quad (j = 2, 3); (59)$$

где  $h_n^{(2)}(z)$  — сферическая функция Бесселя третьего рода [20],  $D_{nj}$  — неизвестные коэффициенты, имеющие первый порядок малости по  $\varepsilon$ .

Если же в граничные условия (53), (54) подставить представление компонент электрического поля (57), (58) с учетом выписанных решений (59), то интегральное условие сохранения полного заряда капли (54) обращается в тождество, а условие эквипотенциальности (53) для орта касательной  $\vec{\tau}_{\varphi}$  сводится к виду  $\frac{\partial \Phi_2}{\partial \theta} = 0$ . Удовлетворить этому равенству можно, если амплитудные коэффициенты  $D_{n2}$  положить равными нулю, что соответствует отсутствию тороидальной части поля:  $\Phi_2 = 0$ .

В итоге приходим лишь к полоидальной составляющей напряженности электрического поля:

$$\vec{E}^{(1)} = \sum_{n=0}^{\infty} D_{n3} \exp(i\omega_n t) \left[ \frac{1}{r} n(n+1) h_n^{(2)}(kr) P_n(\mu) \vec{e}_r + \left( \frac{1}{r} h_n^{(2)}(kr) + \frac{\partial h_n^{(2)}(kr)}{\partial r} \right) \frac{\partial P_n(\mu)}{\partial \theta} \vec{e}_{\theta} \right];$$

где связь постоянных коэффициентов  $D_{n3}$  с амплитудами  $M_n$  возмущения  $\xi(\theta, t)$  находится из условия эквипотенциальности (52) для единичного вектора касательной  $\vec{\tau}_{\theta}$ :

$$D_n^{(3)} = -\frac{Q}{\varepsilon_{\text{ex}}R^2} M_n \frac{1}{\partial_r \left(rh_n^{(2)}(kr)\right)\Big|_{r=R}}$$

В результате получим явный вид поправки  $\vec{E}^{(1)}$ , связанной с искажением  $\xi(\theta, t)$  сферической формы капли:

$$\vec{E}^{(1)}(r,\theta,t) = -\frac{Q}{R^2 r} \sum_{n=2}^{\infty} M_n \exp(i\omega_n t) \times \\ \times \left\{ \frac{h_n^{(2)}(kr)}{\partial_r \left(rh_n^{(2)}(kr)\right)\Big|_{r=R}} n(n+1) P_n(\mu) \vec{e}_r + \\ + \frac{\partial_r \left(rh_n^{(2)}(kr)\right)}{\partial_r \left(rh_n^{(2)}(kr)\right)\Big|_{r=R}} \frac{\partial P_n(\mu)}{\partial \theta} \vec{e}_{\theta} \right\}.$$
(60)

Наконец, используя полученные решения (18), (45), (60) из общего выражения (40) для давления  $P_a^{(1)}$  получим:

$$P_q^{(1)} = -\frac{Q^2}{4\pi R^5} \sum_{n=2}^{\infty} M_n \exp(i\omega_n t) \times \left( \frac{h_n^{(2)}(kR)}{\partial_r \left( r h_n^{(2)}(kr) \right) \Big|_{r=R}} n(n+1) + 2 \right) P_n(\mu).$$
(61)

### ВЫВОД ДИСПЕРСИОННОГО УРАВНЕНИЯ ДЛЯ КАПИЛЛЯРНЫХ ОСЦИЛЛЯЦИЙ ВЯЗКОЙ КАПЛИ БЕЗ УЧЕТА ЭФФЕКТА РЕЛАКСАЦИИ

Подставим теперь решения для добавок к давлениям (48), (49), (61) и разложения (43), (44) с учетом (46), (47) в динамическое граничное условие для нормальной компоненты тензора напряжений (37). Воспользовавшись рекуррентными соотношениями для модифицированной сферической функции Бесселя  $I_n(x)$  (см. [20], стр. 262):

$$\frac{\partial I_n(x)}{\partial x} = I_{n+1}(x) + \frac{n}{x}I_n(x);$$
  
$$I_{n+1}(x) = -\frac{2n+1}{x}I_n(x) + I_{n-1}(x);$$

и свойством ортогональности полиномов Лежандра [20], после несложных математических преобразований придем к дисперсионному уравнению:

$$\omega_n^2 + i\omega_n \frac{\nu}{R^2} \frac{2(n-1)}{f\left(R\sqrt{\frac{i\omega_n}{\nu}}\right) - 1} \times \left(2n+1-n(n+2)f\left(R\sqrt{\frac{i\omega_n}{\nu}}\right)\right) - \frac{-\sigma}{\rho R^3}n(n-1)(n+2) \times \left(1 + \frac{Q^2}{4\pi\sigma R^3(n-1)(n+2)} \times (62) \times \left(1 + \frac{Q^2}{4\pi\sigma R^3(n-1)(n+2)} \times (G_0(kR)n(n+1) + 2)\right) = 0;$$

$$K = \frac{h_n^{(2)}(kR)}{\partial_r \left(rh_n^{(2)}(kr)\right)} = 0;$$

Отметим, что влияние вязкости жидкости на капиллярные осцилляции капли (на основной моде) оценивается величиной безразмерного коэффициента кинематической вязкости  $\mu = \frac{v}{\text{Re }\omega_2 R^2} = v \sqrt{\frac{\rho}{\sigma R}}$ 

[21]. При µ ≪1 вязкость капли считается малой, при µ ≥ 1 вязкость велика, и осцилляции отсутствуют. Из приведенного выражения для безразмерной вязкости видно, что, кроме собственно коэффициента кинематической вязкости, безразмерная вязкость зависит от коэффициента поверхностного натяжения, массовой плотности жидкости и радиуса капли. Так, для одной и той же жидкости капли больших размерах будут осциллировать, а при малых размерах осцилляции будут отсутствовать. В анализируемом случае линейные размеры *R* капель в туманах, облаках и в дожде изменяются от единиц микрон до единиц миллиметров. Оценим для этих размеров величину параметра μ. Принимая  $\sigma = 73$  дин/см,  $\rho = 1$  г/см<sup>3</sup>,  $\nu = 0.01$  см<sup>2</sup>/с, можно показать, что безразмерный параметр ц в диапазоне размеров *R* ∈ 1 мкм−3.5 мм принимает значения от  $\mu = 2 \times 10^{-3}$  при R = 3.5 мм до  $\mu \approx 0.117$  при *R* = 1 мкм. Видно, что во всех случа-

 $\mu \approx 0.117$  при *R* = 1 мкм. Видно, что во всех случаях параметр µ много меньше единицы: µ ≪ 1, т.е. капли будут осциллировать.

В связи с этим для упрощения нижеследующих расчетов воспользуемся асимптотическим представлением функции Бесселя  $I_n(x)$  при больших значениях аргумента x:

$$x \to \infty$$
:  $I_n(x) = \frac{1}{2} \exp(x) \left(\frac{1}{x} + O\left(\frac{1}{x^2}\right)\right);$   
 $x = R \sqrt{\frac{i\omega_n}{v}};$ 

при использовании которого дисперсионное соотношение для предельного случая капли маловязкой жидкости ( $\mu \ll 1$ ) приводится к более простому виду:

$$\omega_n^2 - 2i\omega_n \frac{V}{R^2}(n-1)(2n+1) - \frac{\sigma}{\rho R^3}n(n-1)(n+2) \times \left(1 + \frac{Q^2}{2\pi\sigma R^3(n-1)(n+2)} \times (63) \times (G_0(kR)n(n+1)+2)\right) = 0.$$

В соответствии с представлением сферической функции Бесселя  $h_n^{(2)}(z)$  [20, 22]:

$$h_n^{(2)}(z) = \frac{1}{z} \exp(-iz) \sum_{m=0}^n i^{m+1} \frac{(2n-m)!}{(n-m)! m! (2z)^{n-m}}; \quad z \equiv kr;$$

распишем функцию  $G_0(z)$ , входящую в (63), в виде степенного ряда:

$$G_{0}(z) = \frac{h_{n}^{(2)}(z)}{\partial_{z}\left(zh_{n}^{(2)}(z)\right)} = -\frac{\sum_{m=0}^{n} \frac{(2n-m)!}{(n-m)!m!}(2iz)^{m}}{\sum_{m=0}^{n} \frac{(2n-m)!}{(n-m)!m!}2^{m}(iz)^{m+1} + \sum_{m=0}^{n} \frac{(2n-m)!(n-m)}{(n-m)!m!}(2iz)^{m}}{(n-m)!m!}$$

Учитывая данное разложение, построим асимптотику  $\omega_{2\,0} = 4.64 \times 10^6$  при малых значениях аргумента  $z = z_0 \equiv kR \ll 1$ :

$$G_0(kR) \approx -\frac{1}{n} + i \left(\frac{2^n (n-1)!}{(2n)!}\right)^2 (kR)^{2n+1}.$$

В этом случае (63) примет окончательный вид дисперсионного уравнения для капиллярных осцилляций капли вязкой жидкости без учета релаксации вязкости:

$$\omega_n^2 - 2i\omega_n \frac{v}{R^2} (n-1)(2n+1) - \frac{\sigma}{\rho R^3} n(n-1)(n+2) \times \left(1 - \frac{W}{(n+2)} + i \frac{Wn(n+1)}{(n-1)(n+2)} \times \left(\frac{2^n(n-1)!}{(2n)!}\right)^2 (kR)^{2n+1}\right) = 0;$$
(64)

где  $W = \frac{Q^2}{4\pi\sigma R^3}$  – параметр Релея. Критерий электрогидродинамической устойчивости *n*-ой моды осциллирующей проводящей капли по отношению к давлению электрического поля (к величине собственного заряда) выписывается в виде W < (n+2) [23].

# ЧИСЛЕННЫЕ ОЦЕНКИ

Для построения решения уравнения (64) будем исходить из того, что комплексная частота  $\omega_n$ представляется в виде:  $\omega_n = \text{Re}\omega_n + i\text{Im}\omega_n$ , где реальная часть  $\text{Re}\omega_n$  определяет собственную частоту осцилляций капли, мнимая положительная часть дает декремент затухания, а мнимая отрицательная часть — инкремент капиллярной электростатической неустойчивости. При этом положительная мнимая составляющая  $\text{Im}\,\omega_n$ имеет смысл полного декремента затухания Im $\omega_n = \text{Im}'\omega_n + \text{Im}''\omega_n \equiv \eta_1 + \eta_2$ , обусловленного потерей энергии капилярных осцилляций заряженной невязкой капли на электромагнитное излучение  $\eta_2 \equiv \text{Im}''\omega_n$ .

Принимая Im"  $\omega_n \ll \text{Re}\omega_n$ , решения уравнения (64) представляются в виде:

$$\omega_{n} = \pm \sqrt{\frac{\sigma}{\rho R^{3}} n (n-1) (n+2) \left(1 - \frac{W}{(n+2)}\right) - \left(\frac{v}{R^{2}} (n-1) (2n+1)\right)^{2}} + i \left(\frac{v}{R^{2}} (n-1) (2n+1) + W \frac{\sigma}{\rho R^{3}} n^{2} (n+1) \left(\frac{2^{n} (n-1)!}{(2n)!}\right)^{2} (kR)^{2n+1} \frac{1}{2 \operatorname{Re} \omega_{n}}\right);$$
(65)

где  $k = \frac{\text{Re}\omega_n}{c}$  – волновое число.

В уравнении (65) с учетом приближения малой вязкости  $\text{Re}\omega_n \gg \frac{v}{R^2}$  собственная частота

 $\omega_{n0} \equiv \text{Re}\omega_n$  капиллярных осцилляций *n*-ой моды капли без учета эффекта релаксации вязкости выписывается в виде:

$$\left(\operatorname{Re}\omega_{n}\right)^{2} \equiv \omega_{n0}^{2} = \frac{\sigma}{\rho R^{3}} n(n-1)(n+2) \left(1 - \frac{W}{(n+2)}\right). (66)$$

В (65) декремент вязкого затухания  $\eta_1$  равен:

Im'
$$\omega_n \equiv \eta_1 = \frac{v}{R^2} (n-1)(2n+1);$$
 (67)

а поправка  $\eta_2$  к декременту вязкого затухания, связанного с излучением каплей электромагнитных волн, определяется как:

Im" 
$$\omega_n \equiv \eta_2 = W \frac{\sigma}{\rho R^3} n^2 (n+1) \times \left(\frac{2^n (n-1)!}{(2n)!}\right)^2 (kR)^{2n+1} \frac{1}{2 \operatorname{Re} \omega_n}.$$

После подстановки в выше записанное выражение волнового числа  $k = \frac{\text{Re}\omega_n}{c}$  и равенства (66) найдем окончательное аналитическое выражение декремента затухания капиллярных осцилляций заряженной капли идеальной жидкости, определяемого потерями запасенной энергии на излучение электромагнитных волн:

Im"
$$\omega_n = \eta_2 = W \frac{1}{2} \left( \frac{2^n (n-1)!}{(2n)!} \right)^2 \frac{\sigma^{n+1}}{R^{n+2} c^{2n+1} \rho^{n+1}} n^{n+2} \times ((n-1)(n+2))^n (n+1) \left( 1 - \frac{W}{(n+2)} \right)^n.$$
 (68)

При выполнении условия электростатической неустойчивости *n*-моды капиллярных осцилляций  $W \ge (n + 2)$  подрадикальное выражение в (65) становится отрицательным. В этом случае из (65) получим два мнимых комплексно сопряженных корня. При этом корень с отрицательной мнимой компонентой имеет смысл инкремента нарастания неустойчивости при апериодическом движении вязкой жидкости. В анализируемом случае в отсутствие капиллярных осцилляций (при  $\text{Re}\omega_n = 0$ ) из (67) придем к отсутствию излучения каплей электромагнитных волн при  $\eta_2 = 0$ .

Отметим, что  $\text{Re}\omega_n = \omega_{n0}$  определяет частоту собственных капиллярных осцилляций капли, а  $\text{Im'}\omega_n = \eta_1$  оказывает влияние на гашение осцилляций и, следовательно, на прекращение электромагнитного излучения на соответствующей частоте.

Для отыскания численных оценок обратимся к каплям естественного происхождения: конвективные облака, ливневые дожди [24, 25]. Положим средние характеристики водяных капель аналогично тому, как это было принято в [6, 7]:  $\sigma = 73$  дин/см,  $\rho = 1$  г/см<sup>3</sup>. Тогда осцилляции внутриоблачной капли радиуса R = 10 мкм и зарядом  $Q = 2 \times 10^{-5}$  СГСЭ (~0.01 $Q_{\rm kp}$ ,  $Q_{\rm kp}$  – критическое значение заряда) на основной (второй) моде n = 2 с частотой  $\omega_{2.0} = 0.76 \times 10^6$  рад/с исчезают при вязкости  $\nu = 0.15$  см<sup>2</sup>/с. Электромагнитное излучение (осцилляции) дождевой капли размером R = 0.025 см и зарядом  $Q = 7 \times 10^{-4}$  СГСЭ (~3×10<sup>-3</sup> $Q_{\rm kp}$ ) на частоте  $\omega_{2.0} = 6.1 \times 10^3$  рад/с прекращаются при  $\nu = 0.76$  см<sup>2</sup>/с.

Согласно классическим представлениям, амплитуда  $M_n(t)$  теплового возмущения  $\xi(\theta, t)$  сферической формы капли убывает со временем по экспоненциальному закону с декрементом вязкого затухания капиллярных осцилляций, определяющимся (67). В результате имеем:

$$M_{n}(t) = \varepsilon R \cos(\omega_{n 0}t + \varphi) \exp(-\eta_{1}t);$$
  

$$\varepsilon = \varepsilon_{0} \sqrt{1 + \left(\frac{\eta_{1}}{\omega_{n 0}}\right)^{2}}; \quad \varphi = \operatorname{arctg}\left(-\frac{\eta_{1}}{\omega_{n 0}}\right), \quad (69)$$

где  $\varepsilon_0 = 0.1$  является безразмерной амплитудой осцилляций.

На рис. 1–3 (кривые *1*) иллюстрируется временная эволюция амплитуды возмущения основной моды (n = 2), рассчитанная численно по (69) при  $v = 0.01 \text{ см}^2/\text{с}$ . Несложно видеть, что при изменении размера капли *R* меняется качественный вид кривых: при снижении *R* уменьшается число колебаний поверхности капли до полного их прекращения. Так, для наименьшей облачной капли *R* = 3 мкм, осциллирующей на ча-

**Рис. 1.** Зависимость от времени *t* амплитуды  $M_2(t)$ , рассчитанная при n = 2,  $\rho = 1$  г/см<sup>3</sup>,  $\sigma = 73$  дин/см, возмущения равновесной формы: а – для вязкой заряженной облачной капли радиуса R = 3 мкм и зарядом  $Q = 2 \times 10^{-5}$  СГСЭ (~0.06 $Q_{\rm kp}$ ); б – для вязкой заряженной облачной капли радиуса R = 30 мкм и зарядом  $Q = 2 \times 10^{-5}$  СГСЭ (~2×10<sup>-3</sup> $Q_{\rm kp}$ ); в – для вязкой заряженной дождевой капли радиуса R = 0.25 мм и зарядом  $Q = 7 \times 10^{-4}$  СГСЭ (~3×10<sup>-3</sup> $Q_{\rm kp}$ ). Кривая *1* получена без учета релаксации вязкости и соответствует затухающим капиллярным волнам, а кривая *2* – с учетом эффекта релаксации вязкости и соответствует вязкоупругим затухающим капиллярным осцил-

ляциям.





**Рис. 2.** Зависимость частоты  $\text{Re}_{02} = \omega_{20}$  собственных капиллярных осцилляций вязкой заряженной облачной капли без учета эффекта релаксации вязкости от радиуса *R*, рассчитанная при тех же значениях физических величин, что на рис. 1. Кривая *I* соответствует W = 0.95, кривая 2 - W = 0.01.

стоте  $\omega_{20} = 4.64 \times 10^6$  рад/с, за время вязкого затухания (при  $\eta_1 = 0.56 \times 10^6$  рад/с) происходит ≈8 колебаний (рис. 1, кривая *I*) с периодом *T* = 1.36 мкс. Однако уже крупная дождевая капля *R* = 30 мкм совершает ≈26 колебаний при собственной частоте  $\omega_{20} = 1.47 \times 10^5$  рад/с с затуханием  $\eta_1 = 5.6 \times 10^3$  рад/с (рис. 3, кривая *I*) и периодом затухающих осцилляций *T* = 42.75 мкс. В случае наименьшей дождевой капли радиуса *R* = 250 мкм, осциллирующей на частоте  $\omega_{20} = 6.1 \times 10^3$  рад/с при  $\eta_1 = 0.08 \times 10^3$  рад/с, количество колебаний увеличивается до ≈ 76 с периодом *T* = 1.03 мс (рис. 4).

Для объяснения приведенных графиков (рис. 1– 3, кривые *I*), построенных при различных радиусах, целесообразно показать зависимости характеристик осцилляций капли  $\omega_{20}$ ,  $\eta_1$  от *R*. Из рис. 4, 5 видно, что рост размера капли сказывается на снижении частоты  $\omega_{20}$ , как ~1/ $R^{3/2}$ , а также на уменьшении декремента вязкого затухания  $\eta_1$ , как ~1/ $R^2$ . Из сказанного следует, что при возрастании радиуса капли величина  $\omega_{20}/\eta_1$ , имеющая смысл числа колебаний, совершаемых за время вязкого затухания, растет ~ $R^{1/2}$  и, следовательно, увеличивается период затухающих осцилляций.

Кроме того, из рис. 4 выясняется, что возрастание величины заряда (параметра Рэлея) приводит к уменьшению частоты осцилляций  $\omega_{20}$ . Следует заметить, что зависимость  $\omega_{20}$  (кривая *I*) при значениях параметра Релея, близких к критическим, имеет лишь качественный характер, так как в соответствии с данными натурных измерений  $W \ll 1$  [24]. Из (67) и рис. 6 можно видеть, что декремент вязкого затухания  $\eta_1$  линейно зависит от вязкости  $\nu$ .

### ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ ОТ ОСЦИЛЛИРУЮЩЕЙ КАПЛИ

В случае маловязкой жидкости положим влияние вязкости на частоту осцилляций пренебрежимо малым. Тогда в приближении идеальной жидкости на основе закона сохранения энергии невязкое затухание капиллярных осцилляций капли вызы-



**Рис. 3.** Зависимость величины декремента вязкого затухания  $\eta_l$  капиллярных осцилляций заряженной облачной капли без учета релаксации вязкости от радиуса *R*, рассчитанная при тех же физических величин, что на рис. 1 и  $Q = 2 \times 10^{-5}$  СГСЭ (~0.03 $Q_{\rm kp}$  при R = 3 мкм и ~2 ×  $10^{-3}Q_{\rm kp}$  при R = 30 мкм). Кривая *I* построена при  $v_0 = 0.01$  см<sup>2</sup>/с, кривая 2 - v = 0.02 см<sup>2</sup>/с, кривая 3 - v = 0.03 см<sup>2</sup>/с.

вается потерями энергии осцилляций при ускоренном движении зарядов на излучение электромагнитных волн. Учитывая, что энергия поверхностных колебаний *n*-ой моды  $\vartheta_n$  убывает со временем экспоненциально:  $\vartheta_n \sim \exp(-2\eta_2)$ , представим мощность электромагнитного излучения в общем виде [4]:

$$I = -\frac{d\vartheta_n}{dt} = 2\eta_2 \vartheta_n.$$
(70)

В (70) декремент  $\eta_2$  невязкого затухания без учета эффекта релаксации вязкости рассчитывается по (68), а  $\vartheta_n$  находится по теореме вириала как удвоенная средняя за период кинетическая энергия движения молекул внутренней среды капли:

$$\vartheta_n = \frac{\rho}{2} \int_V \left| \vec{V}_1(r, \theta, t) \right|^2 r^2 dr \sin\theta d\theta d\varphi;$$
  
$$V = [0 \le r \le R, 0 \le \theta \le \pi, 0 \le \varphi \le 2\pi].$$

Подставляя в равенство  $\vec{V}_1(r, \theta, t) = \nabla \psi_1(r, \theta, t)$ разложение (43) для функции  $\psi_1(r, \theta, t)$  с учетом (46) при  $\nu = 0$ , найдем решение для поля скоростей потенциального движения жидкости в капле:

КОЛЛОИДНЫЙ ЖУРНАЛ том 85 № 4 2023

$$\vec{V}_{1}(r,\theta,t) = \sum_{n=2}^{\infty} \left(\frac{r}{R}\right)^{n-1} i\omega_{n}M_{n} \exp\left(i\omega_{n}t\right) \times \left(P_{n}\left(\mu\right)\vec{e}_{r} + \frac{1}{n}\frac{\partial P_{n}\left(\mu\right)}{\partial\theta}\vec{e}_{\theta}\right);$$

при использовании которого несложно перейти к $\vartheta_n$  в виде:

$$\vartheta_n = \frac{2\pi\rho R^3 M_n^2 \omega_{n\,0}^2}{n(2n+1)}.$$
(71)

Исходя из вида (65), (68), (71), выпишем окончательное аналитическое выражение для интенсивности радиоизлучения (70), связанного с *n*-ой колебательной модой единичной заряженной капли:

$$I = \frac{2\pi W \sigma^{n+2} M_n^2}{R^{n+2} c^{2n+1} \rho^{n+1}} \times \frac{n^{n+2} ((n-1)(n+2))^{n+1} (n+1)}{(2n+1)} \times \frac{\left(\frac{2^n (n-1)!}{(2n)!}\right)^2 \left(1 - \frac{W}{(n+2)}\right)^{n+1}}{N}.$$
(72)



**Рис. 4.** Зависимость от времени *t* амплитуды  $M_2(t)$  возмущения равновесной формы вязкой заряженной облачной капли радиуса R = 3 мкм и зарядом  $Q = 2 \times 10^{-5}$  СГСЭ (~0.06 $Q_{\rm kp}$ ), построенная с учетом релаксации вязкости. Соответствует апериодическим упругим движениям жидкости. Расчеты проведены при тех же значениях физических величин, что на рис. 1.

Используя (72), проведем численную оценку мощности электромагнитного излучения, связанного с осцилляциями заряженных капель в конвективных облаках на стадии их образования. В соответствии с данными натурных измерений типичные размеры облачных капель изменяются от 3 до 30 мкм с максимальной концентрацией, приходящейся на диапазон 3-7 мкм. При этом средняя концентрация таких капель в облаке составляет ~ $10^3$  см<sup>-3</sup> [24].

Появление нескомпенсированных зарядов на отдельных осциллирующих каплях вызывается процессами электризации при захвате каплями воздушных ионов, перераспределения зарядов из-за спонтанного разрушения, слияния с более мелкими каплями, разбрызгивания и кристаллизации переохлажденных капель [25].

Для нижеследующих оценок положим, что единичная капля осциллирует с амплитудой  $M_n = 0.1R$ (величина безразмерной амплитуды осцилляций равна  $\varepsilon = 0.1$ ) за счет возбуждения основной колебательной моды n = 2. Воспользовавшись выше приведенными значениями физических величин, получим, что капля размером R = 3 мкм обладает мощностью излучения  $I \sim 2 \times 10^{-40}$  эрг/с на частоте  $\omega_{20} = 4.64 \times 10^6$  рад/с с декрементом невязкого затухания  $\eta_2 = 3 \times 10^{-34}$  рад/с. Для капли R == 30 мкм интенсивность излучения составляет  $I \sim 2 \times 10^{-45}$  эрг/с при  $\omega_{20} = 1.47 \times 10^5$  рад/с и  $\eta_2 = 3 \times 10^{-41}$  рад/с.

Моделируя грозовое облако протяженностью 10 км ансамблем осциллирующих капель размером R = 30 мкм, несложно оценить интегральную интенсивность излучения:  $I_{1in} \sim 1 \times 10^{-24}$  эрг/с.

#### УЧЕТ ЭФФЕКТА РЕЛАКСАЦИИ ВЯЗКОСТИ

Введение комплексной кинематической вязкости (1) позволяет перейти от (64) к дисперсионному уравнению, учитывающему вязкоупругие свойства жидкой капли:



**Рис. 5.** Зависимость величины декремента вязкоупругого затухания  $\eta_3$  капиллярных осцилляций заряженной облачной капли от радиуса *R*, рассчитанная при тех же значениях физических величин, что на рис. 3 и  $\tau = 1 \times 10^{-5}$  с. Кривая *I* построена при  $\nu_0 = 0.01$  см<sup>2</sup>/с, кривая  $2 - \nu_0 = 0.02$  см<sup>2</sup>/с, кривая  $3 - \nu_0 = 0.03$  см<sup>2</sup>/с.

$$\omega_n^3 - il_1\omega_n^2 - \omega_n(l_{21} + il_{22}) + il_{31} - l_{32} = 0; \quad (n \ge 2);$$

$$l_1 = \frac{1}{\tau}; \quad l_{21} = \frac{2\nu_0}{R^2\tau}(n-1)(2n+1) + \omega_{n0}^2;$$

$$l_{22} = W\frac{\sigma}{\rho R^3}n^2(n+1)\left(\frac{2^n(n-1)!}{(2n)!}\right)^2(kR)^{(2n+1)};$$

$$l_{31} = \frac{\omega_{n0}^2}{\tau}; \quad l_{32} = \frac{l_{22}}{\tau}.$$
(73)

В (73)  $\omega_{n 0}^2$  определено соотношением (66), k – волновое число.

Из вида дисперсионного уравнения (73) видно, что второй и четвертый его коэффициенты чисто мнимые, и что порядок алгебраического уравнения уже третий, а не второй, как это было без учета релаксации вязкости. Данное обстоятельство объясняется усложнением спектра реализующихся движений жидкости в капле за счет возникновения релаксационных апериодических сдвиговых движений жидкости [9, 11].

Используя пакет аналитических вычислений МАТНЕМАТІСА, найдем комплексные решения кубического дисперсионного уравнения (73) для разных диапазонов размеров капель, в которых сразу же выделим реальную  $\text{Re}\omega_n^{(j)}$  и мнимую  $\text{Im}\omega_n^{(j)}$  части:

$$Re\omega_{n}^{(1)} = 0; \quad Re\omega_{n}^{(2)} = -\frac{\sqrt{3}}{2}(\alpha_{0} - \alpha_{1});$$

$$Re\omega_{n}^{(3)} = \frac{\sqrt{3}}{2}(\alpha_{0} - \alpha_{1}); \quad Im\omega_{n}^{(1)} = \frac{l_{1}}{3} - \alpha_{0} - \alpha_{1} + \alpha_{2};$$

$$Im\omega_{n}^{(2)} = Im\omega_{n}^{(3)} = \frac{l_{1}}{3} + \frac{1}{2}(\alpha_{0} + \alpha_{1} - \alpha_{2}),$$
(74)



**Рис. 6.** Зависимость величины декремента вязкоупругого затухания  $\eta_3$  капиллярных осцилляций заряженной облачной капли от величины коэффициента кинематической вязкости  $v_0$ , рассчитанная при тех же значениях физических величин, что на рис. 1. Кривая *1* построена при R = 3 мкм, кривая 2 - R = 6 мкм, кривая 3 - R = 9 мкм.

для  $R \ge 58$  мкм:

$$\begin{aligned} \operatorname{Re}\omega_{n}^{(1)} &= 0; \quad \operatorname{Re}\omega_{n}^{(2)} = \frac{\sqrt{3}}{2} \left(\alpha_{0}^{'} - \alpha_{1}^{'}\right); \\ \operatorname{Re}\omega_{n}^{(3)} &= -\frac{\sqrt{3}}{2} \left(\alpha_{0}^{'} - \alpha_{1}^{'}\right); \\ \operatorname{Im}\omega_{n}^{(1)} &= \frac{l_{1}}{3} + \alpha_{0}^{'} + \alpha_{1}^{'} - \alpha_{2}^{'}; \\ \operatorname{Im}\omega_{n}^{(2)} &= \operatorname{Im}\omega_{n}^{(3)} = \frac{l_{1}}{3} - \frac{1}{2} \left(\alpha_{0}^{'} + \alpha_{1}^{'} - \alpha_{2}^{'}\right); \\ \alpha_{0} &= \frac{\sqrt[3]{2}\beta_{0}}{3\sqrt[3]{\beta_{1}} + \beta_{2}}; \quad \alpha_{1} = \frac{\sqrt[3]{\beta_{1}} + \beta_{2}}{3\sqrt[3]{2}}; \\ \alpha_{2} &= \frac{\sqrt[3]{2}l_{23}}{\sqrt[3]{\beta_{1}} + \beta_{2}}; \quad l_{23} = \frac{l_{32}}{\operatorname{Re}\omega_{n}^{(j)}}; \quad \beta_{0} = l_{1}^{2} - 3l_{21}; \\ \beta_{1} &= -2l_{1}^{3} + 9l_{1}l_{21} - 27l_{31}; \\ \beta_{2} &= 3\sqrt{3} \frac{|l_{1}^{2}l_{2}^{'2} - 4l_{2}^{'2} - 4l_{1}^{'3}l_{31} + 18l_{1}l_{2}l_{31} - 27l_{31}^{'2}]; \end{aligned}$$

$$\alpha_{0}^{'} = \frac{\sqrt[3]{2}\beta_{0}}{3\sqrt[3]{|\beta_{1} + \beta_{2}|}}; \quad \alpha_{1}^{'} = \frac{\sqrt[3]{|\beta_{1} + \beta_{2}|}}{3\sqrt[3]{2}}; \quad \alpha_{2}^{'} = \frac{\sqrt[3]{2}}{\sqrt[3]{|\beta_{1} + \beta_{2}|}}.$$

Видно, что в (75), (76) одно решение  $\omega_n^{(1)}$  является чисто мнимым, а два других  $\omega_n^{(2)}$ ,  $\omega_n^{(3)}$  – с одинаковой мнимой компонентой и разными по знаку вещественными составляющими.

Подставляя  $\operatorname{Re} \omega_n^{(j)}$  (j = 1-3) в (74), (75), выпишем декременты затухания  $\operatorname{Im'} \omega_n^{(1)}$  апериодического упругого движения вязкой жидкости и декременты вязкоупругого затухания  $\eta_3$  капиллярных осцилляций капли:

для *R* < 58 мкм:

$$\operatorname{Im}' \omega_n^{(1)} = \frac{l_1}{3} - \alpha_0 - \alpha_1;$$
  
$$\operatorname{Im}' \omega_n^{(2)} = \operatorname{Im}' \omega_n^{(3)} \equiv \eta_3 = \frac{l_1}{3} + \frac{1}{2}(\alpha_0 + \alpha_1),$$

для *R* ≥ 58 мкм:

$$\operatorname{Im'} \omega_n^{(1)} = \frac{l_1}{3} + \alpha_0' + \alpha_1';$$
$$\operatorname{Im'} \omega_n^{(2)} = \operatorname{Im'} \omega_n^{(3)} \equiv \eta_3 = \frac{l_1}{3} - \frac{1}{2} (\alpha_0' + \alpha_1');$$

и поправки к затуханию капиллярных осцилляций капли, обусловленные потерями запасенной энергии на генерацию электромагнитных волн:

$$\operatorname{Im}^{"} \omega_{n}^{(1)} = 0; \quad \operatorname{Im}^{"} \omega_{n}^{(2)} = \operatorname{Im}^{"} \omega_{n}^{(3)} \equiv \eta_{4} = = W \frac{\sigma R^{2n-2}}{3^{n} 2^{\frac{2(4n+1)}{3}} \rho c^{2n+1} |\beta_{1} + \beta_{2}|^{\frac{2n+1}{3}} \tau} \times (77) \times n^{2} (n+1) \left(\frac{2^{n} (n-1)!}{(2n)!}\right)^{2} \left(\sqrt[3]{2}\beta_{0} - |\beta_{1} + \beta_{2}|^{\frac{2n+1}{3}}\right)^{2n},$$

где величины  $\beta_0, \beta_1, \beta_2$  зависят от физических параметров задачи.

Для иллюстрации численных решений по уравнениям (74), (75) при  $\tau = 1 \times 10^{-5}$  с положим, что осцилляции капель связаны с основной модой n = 2. Итак, принимая выше приведенные характеристики и средний заряд облачных капель  $Q = 2 \times 10^{-5}$  СГСЭ (~0.06 $Q_{\rm kp}$  при R = 3 мкм и ~0.002 $Q_{\rm kp}$  при R = 30 мкм) с радиусом R = 3 мкм находим:  $\omega_2^{(1)} = 9.95 \times 10^4 i$  рад/с,  $\omega_2^{(2)} = (4.7 \times 10^6 + 0.3 \times 10^3 i)$  рад/с,  $\omega_2^{(3)} = (-4.7 \times 10^6 + 0.3 \times 10^3 i)$  рад/с.

Для R = 30 мкм справедливо решение:  $\omega_2^{(1)} = 9.65 \times 10^4 i$  рад/с,  $\omega_2^{(2)} = (1.5 \times 10^5 + 1.7 \times 10^3 i)$  рад/с,  $\omega_2^{(3)} = (-1.5 \times 10^5 + 1.7 \times 10^3 i)$  рад/с.

Учитывая средний заряд дождевых капель  $Q = 7 \times 10^{-4} \ \mathrm{C}\Gamma\mathrm{C}\Theta \ (\sim 2 \times 10^{-3} Q_{\mathrm{кр}} \ \mathrm{прu} \ R = 0.025 \ \mathrm{сm} \ \mathrm{u}$   $\sim 3 \times 10^{-5} Q_{\mathrm{кp}} \ \mathrm{прu} \ R = 0.35 \ \mathrm{cm}$ ), при наименьшем радиусе  $R = 0.025 \ \mathrm{cm}$  несложно рассчитать:  $\omega_2^{(1)} = 9.98 \times 10^4 i \ \mathrm{pad/c}, \ \omega_2^{(2)} = (6.1 \times 10^3 + 0.8 \times 10^2 i) \ \mathrm{pad/c}, \ \omega_2^{(3)} = (6.1 \times 10^3 + 0.8 \times 10^2 i) \ \mathrm{pad/c}.$ 

Для наиболее крупной дождевой капли R = 0.35 см получим:  $\omega_2^{(1)} = 1 \times 10^5 i$  рад/с,  $\omega_2^{(2)} = (117 + 0.4i)$  рад/с,  $\omega_2^{(3)} = (-117 + 0.4i)$  рад/с.

Анализ численных решений уравнения (73), получающихся при докритических значениях параметра Релея W/4 < 1, показывает, что первый корень  $\omega_2^{(1)}$  соответствует чисто релаксационному апериодическому затуханию упругих движений вязкой жидкости. Второй и третий корни  $\omega_2^{(2)}, \omega_2^{(3)}$ характеризуют слабо затухающие вязкоупругие осцилляции мелких облачных капель. Расчеты показывают, что декремент вязкоупругого затухания η<sub>3</sub> на четыре порядка меньше частоты собственных осцилляций Re $\omega_2^{(2)}$ . Затухающие вязкоупругие капиллярные осцилляции дождевых и крупных облачных капель (η<sub>3</sub> на два порядка ниже  $\operatorname{Re}\omega_{2}^{(2)}$ ) представлены на рис. 16, 1в (кривые 2). Из рис. 1в видно, что с увеличением размера капли вязкоупругие и капиллярные волны сближаются, а при R = 0.25 мм совпадают (см. рис. 3).

Из данных численных расчетов можно видеть, что по сравнению характеристиками, получен-

ными по (66), (67) без учета релаксации вязкости, включение эффекта релаксации вязкости приводит к снижению величины декремента вязкоупругого затухания  $\eta_3$  и небольшому увеличению частоты

собственных капиллярных осцилляций  $\operatorname{Re}\omega_2^{(2)}$ .

На рис. 4 приведена зависимость от времени апериодического затухания амплитуды основной моды мелкой облачной капли.

При возрастании R и кинематической вязкости  $v_0$  декремент вязкоупругого затухания  $\eta_3$  увеличивается по приблизительно линейному закону (рис. 5 и 6).

Рис. 7 иллюстрирует незначительное возрастание величины  $\eta_3$  при увеличении безразмерного параметра Рэлея W: при увеличении параметра Релея в десять раз инкремент  $\eta_3$  возрастает примерно на одну пятую.

Расчеты показывают, что при увеличении вязкости  $v_0$  наблюдается весьма слабое линейное возрастание частоты собственных осцилляций  $\text{Re}\omega_2^{(2)}$ : при увеличении  $v_0$  в три раза изменения величины  $\eta_3$ . происходит примерно на 0.3 процента величины. Согласно расчетам, столь же слаба зависимость  $\text{Re}\omega_2^{(2)}$  от характерного времени релаксации вязкости  $\tau$ 

Из рис. 8, на котором представлены расчетные зависимости  $\eta_3(\tau)$ , видно, что декремент вязкоупругого затухания  $\eta_3$  заметно уменьшается с увеличением  $\tau$ : возрастание  $\tau$  на порядок приводит к снижению на два порядка величины  $\eta_3$ . При увеличении  $\tau$  до  $6 \times 10^{-5}$  с кривые *1–3* сливаются, т.е при  $\tau > 6 \times 10^{-5}$  с декремент  $\eta_3$  весьма слабо зависит от характерного времени релаксации  $\tau$ .

В случае закритических значений параметра Релея  $W/4 \ge 1$  из решений дисперсионного уравнения (73) можно получить три комплексных корня: один корень является мнимым положительным, а два других — мнимыми комплексно сопряженными. Корень с отрицательным знаком при мнимой единице соответствует появлению неустойчивого апериодического упругого движения вязкой жидкости.

Воспользовавшись (70), (75) и (77), получаем, что учет эффекта релаксации вязкости приводит к изменению характеристик излучающих внутриоблачных капель в отличие от характеристик, найденных в пренебрежении вязкоупругих свойств жидкости. Так, для капли R = 3 мкм оценка интенсивности излучения дала  $I \sim 3 \times 10^{-42}$  эрг/с на частоте  $\omega_2^{(2)} = 4.7 \times 10^6$  рад/с при декременте затухания  $\eta_4 = 4 \times 10^{-36}$  рад/с, численно найденному по выражению (77). При радиусе капли R = 30 мкм получена мощность излучения  $I \sim 2 \times 10^{-45}$  эрг/с при  $\omega_2^{(2)} = 0.15 \times 10^6$  рад/с и  $\eta_4 = 2 \times 10^{-41}$  рад/с.



**Рис.** 7. Зависимость от величины параметра Релея W величины декремента вязкоупругого затухания  $\eta_3$  капиллярных осцилляций заряженной облачной капли радиуса R = 3 мкм, построенная при тех же значениях физических величин, что и на рис. 1.



**Рис. 8.** Зависимость величины декремента вязкоупругого затухания  $\eta_3$  капиллярных осцилляций заряженной облачной капли от характерного времени релаксации  $\tau$ , построенная при тех же значениях физических величин, что и на рис. 1. Кривая *1* соответствует *R* = 3 мкм, кривая *2* – *R* = 6 мкм, кривая *3* – *R* = 9 мкм.

Анализ численных оценок показывает, в силу учета эффекта релаксации вязкости поправка к декременту вязкоупругого затухания, связанная с уменьшением запасенной энергии капли на излучение электромагнитных волн, а также мощность радиоизлучения снижаются быстрее на более высоких частотах.

Численный анализ показывает, что на критические условия реализации электростатической неустойчивости капли вязкоупругость, как и вязкость жидкости влияния не оказывает.

### ЗАКЛЮЧЕНИЕ

Учет вязкоупругих свойств заряженной капли проводящей жидкости обеспечивает незначительное увеличение частоты собственных осцилляций и существенное снижение декремента вязкоупругого затухания мелких облачных капель. Показано, что релаксационный эффект проявляется в снижении гасяшего влияния на спектр капиллярных осцилляций на высоких частотах. Однако вязкоупругие свойства жидкости не оказывают заметного влияния на вязкоупругие затухающие капиллярные осцилляции и электромагнитное излучение дождевых капель. Выявлено, что наличие собственного заряда капли сказывается на снижении частоты собственных осцилляций и возрастании декремента вязкого затухания. При этом включение релаксационного процесса приводит к существенной зависимости декремента вязкоупругого затухания от характерного времени релаксации. Наличие эффекта релаксации вязкости приводит к снижению на два порядка величины декремента затухания, определяемого потерями энергии на излучение электромагнитных волн, и интенсивности электромагнитного излучения на высоких частотах.

### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект 19-19-00598 "Гидродинамика и энергетика капли и капельных струй: формирование, движение, распад, взаимодействие с контактной поверхностью", https://rscf.ru/project/19-19-00598/).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, у них нет конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Караваев Д.М., Щукин Г.Г. Совершенствование методов раннего предупреждения развития грозовых процессов и выявления зон обледенения в облаках на основе комплексного использования методов активной и пассивной радиолокации // Гидрометеорология и экология. 2021. № 62. С. 7–26.
- 2. Качурин Л.Г., Кармов М.И., Медалиев Х.Х. Основные характеристики радиоизлучения конвективных облаков // Изв. АН СССР. Сер. ФАО. 1974. Т. 10. № 11. С. 1164–1169.

- Аджиев А.Х., Богаченко Е.М. Грозы Северного Кавказа. Нальчик: Полиграфсервис и Т. 2011. 152 с.
- Калечиц В.И., Нахутин И.Е., Полуэктов П.П. О возможноммеханизмерадиоизлученияконвективныхоблаков // ДАН СССР. 1982. Т. 262. № 6. С. 1344–1347.
- Богатов Н.А. Электромагнитное поле, генерируемое капиллярными колебаниями капель // Сборник тезисов докладов VI Международной конференции "Солнечно-земные связи и физика предвестников землетрясений". Петропавловск-Камчатский, ДВО РАН, 2013. С. 22–26.
- 6. Григорьев А.И., Ширяева С.О., Колбнева Н.Ю. Электромагнитное излучение капли, осциллирующей в грозовом облаке. Москва–Берлин: Изд. Директ-Медиа, 2021. 200 с.
- 7. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965. 203 с.
- 8. *Френкель Я.И*. Кинетическая теория жидкостей. Л.: Наука, 1975. 592 с.
- 9. Ширяева С.О., Григорьев О.А. О капиллярном движении вязкоупругой жидкости с заряженной свободной поверхностью // ЖТФ. 2000. Т. 70. № 8. С. 39–44.
- 10. Бадмаев Б.Б., Базарон У.Б., Лайдабон Ч.С., Дерягин Б.В. Сдвиговые механические свойства полимерных жидкостей и их растворов // ДАН СССР. 1992. Т. 322. № 2. С. 307-311.
- Быковский Ю.А., Маныкин Э.А., Нахутин И.Е., Полуэктов П.П., Рубежный Ю.Г. Спектр поверхностных колебаний жидкости с учетом релаксационных эффектов // ЖТФ. 1976. Т. 46. № 10. С. 2211–2213.
- Базарон У.Б., Дерягин Б.В., Булгадаев А.В. Исследование сдвиговой упругости жидкостей и граничных слоев резонансным методом// ЖЭТФ. 1966. Т. 541. № 4 (5). С. 969–982.
- Стерлядкин В.В. Натурные измерения колебаний капель осадков // Изв. АН СССР. Сер. ФАО. 1988. Т. 24. № 6. С. 613–621.
- 14. *Ландау Л.Д., Лифшиц Е.М.* Гидродинамика. М.: Наука, 1986. 733 с.
- 15. Найфе А.Х. Методы возмущений. М.: Мир, 1976. 455 с.
- Лазарянц А.Э., Ширяева С.О., Григорьев А.И. Скаляризация векторных краевых задач. М.: Русайнс, 2020. 140 с.
- 17. *Несис Е.И.* Методы математической физики. М.: Просвещение, 1977. 199 с
- 18. *Арфкен Г.* Математические методы в физике. М.: Атомиздат, 1970. 712 с.
- Варшалович Д.А., Москалев А.Н., Херсонский В.К. Квантовая теория углового момента. Л.: Наука, 1975. 436 с.
- Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. 830 с.
- Григорьев А.И. О некоторых закономерностях реализации неустойчивости сильно заряженной вязкой капли // ЖТФ. 2001. Т. 71. № 10. С. 1–7.
- 22. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1963. 1108 с.
- Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity // Phil. Mag. 1882.
   V. 14. № 87. P. 184–186.
- 24. *Мазин И.П., Хргиан А.Х., Имянитов И.М.* Облака и облачная атмосфера. Справочник. Л.: Гидрометео-издат, 1989. 647 с.
- 25. *Мазин И.П., Шметер С.М.* Облака. Строение и физика образования. Л.: Гидрометеоиздат, 1983. 280 с.