УДК 691-16,691-17

ВЛИЯНИЕ СТАРЕНИЯ И МОДИФИКАЦИИ НА МЕЖФАЗНОЕ ВЗАИМОДЕЙСТВИЕ В АСФАЛЬТОВЫХ ВЯЖУЩИХ

© 2023 г. Т. В. Дударева^{1, *}, И. А. Красоткина¹, И. В. Гордеева¹,

В. Г. Никольский¹, Л. А. Горелышева², В. Н. Гарманов²

¹Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 119991 Россия ²ФАУ "Российский дорожный научно-исследовательский институт", ул. Смольная, 2, Москва, 125493 Россия *e-mail: yanadva@mail.ru Поступила в редакцию 19.06.2023 г. После доработки 18.08.2023 г. Принята к публикации 18.08.2023 г.

В диапазоне температур $-10-30^{\circ}$ С исследовано влияние термоокислительного старения, частоты и деформации на межфазное взаимодействие по параметрам $K-B-G^*$ и $K-B-\delta$ в асфальтовом вяжущем и модифицированном асфальтовом вяжущем на основе битума марки БНД60/90. Наполнитель вводили в битум в соотношении 1/1 по массе. Активный порошок дискретно девулканизованной резины (АПДДР) в качестве модификатора вводился в соотношении битум/АПДДР = 87.5/12.5 по массе. Показано, что модификация АПДДР обеспечивает большую по сравнению с асфальтовым вяжущим толщину адсорбированного слоя на поверхности частиц наполнителя при различных условиях внешних воздействий, причем эта толщина зависит от последовательности введения наполнителя и АПДДР.

Ключевые слова: межфазное взаимодействие, толщина адсорбированного слоя, битум, асфальтовое вяжущее, наполнитель, модификатор

DOI: 10.31857/S0023291223600451, EDN: FQNNEY

введение

В асфальтобетонной смеси поверхность крупного и мелкого заполнителя покрыта асфальтовым вяжущим, представляющим собой суспензию, состоящую из матричной фазы битума и тонкодисперсного минерального наполнителя, имеющего размеры частиц менее 75 мкм [1].

Для количественной оценки и сравнения способности битумного вяжущего и наполнителя к взаимодействию рассматриваются подходы, основанные на реологии [2]. Реологические свойства асфальтового вяжущего (комплексный модуль сдвига, фазовый угол и др.) в значительной степени зависят как от свойств битума, так и наполнителя [3, 4]. К увеличению комплексного модуля асфальтового вяжущего может приводить объемный вклад более жестких частии наполнителя. физическое взаимодействие между частицами наполнителя, а также физико-химическое взаимодействие между наполнителем и битумом, которое определяется как свойствами наполнителя (кислотно-основные свойства, удельная площадь поверхности и т.п.), так и групповым химическим составом битума [5-7]. Для прогнозирования влияния минерального наполнителя на жесткость асфальтового вяжущего был предложен ряд микромеханических моделей. Результаты микромеханического моделирования с использованием моделей Maron-Pierce, Lewis и Nielsen, Hashin, Christensen и Lo и других исследователей показали, что большинство моделей достаточно точно прогнозируют жесткость при низких концентрациях наполнителя [4]. Основное действие наполнителя в этих моделях заключается в повышении жесткости битума по механизму объемного армирования и, следовательно, в улучшении механических свойств асфальтобетонной смеси [8]. Однако результаты сравнения различных наполнителей показывают, что одинаковое объемное содержание имеет разный эффективный объем, что говорит о наличии межфазного взаимодействия между частицами минерального наполнителя и битумом, которое может включать абсорбцию, адсорбцию и селективную сорбцию [9, 10]. Природа взаимодействия компонент в асфальтовых вяжущих и ее влияние на реологию являются в последние годы предметом обширных исследований [6, 11-14]. Прямыми исследованиями с помощью атомно-силовой микроскопии было подтверждено, что в асфальтовых вяжущих взаимодействие определяется адсорбцией полярных фракций битумного вяжущего на поверхности частиц наполнителя, при этом в битумной матрице отмечено уменьшение размеров кристаллических структур (bee-like structure) [15, 16]. Для оценки влияния этого адсорбционного слоя на реологические свойства асфальтового вяжущего предложено и проанализировано несколько параметров. Наиболее широко при изучении вязкоупругости многофазных смесей используется модель эмульсии Palierne [17], которая для системы твердых частиц, диспергированных в вязкоупругой матрице, такой как система асфальтовых вяжущих, может быть представлена в виде уравнения (1):

$$K - B - G^* = \frac{(G_c^*/G_m^*) - 1}{(1.5 + G_c^*/G_m^*)\varphi},$$
(1)

где параметр $K-B-G^*$ характеризует физико-химическое взаимодействие между минеральным порошком и битумом через комплексный модуль;

 φ — объемная доля наполнителя; $G_{\rm c}^*$ и $G_{\rm m}^*$ значения комплексного модуля для асфальтового вяжущего и матрицы — битумного вяжущего в зависимости от частоты.

Оценка межфазного взаимодействия через фазовый угол была предложена в работах [18] (уравнение (2)) и [19] (уравнение (3)):

$$K - B - \delta = \frac{(\mathrm{tg}\delta_{\mathrm{m}}/\mathrm{tg}\delta_{\mathrm{c}}) - 1}{1.5\varphi},$$
(2)

$$K - A - \delta = \frac{(\mathrm{tg}\delta_{\mathrm{c}}/\mathrm{tg}\delta_{\mathrm{m}})}{(1 - \varphi)} - 1, \qquad (3)$$

где φ — объемная доля наполнителя; tg δ_c и tg δ_m значения тангенса фазового угла в зависимости от частоты для асфальтового вяжущего и для матрицы — битумного вяжущего.

Чем больше значения $K-B-G^*$ и $K-B-\delta$, или чем меньше значение $K-A-\delta$, тем сильнее взаимодействие битумного вяжущего с наполнителем. Параметр взаимодействия $K-B-G^*$ рассматривают как коэффициент, увеличивающий объемную долю наполнителя (ϕ) до эффективной объемной доли ($\phi_{э\phi}$) (минеральный порошок вместе с адсорбированным слоем матрицы), что позволяет оценить толщину адсорбированного слоя (d), зная плотность и удельную поверхность наполнителя:

$$d = \frac{\varphi_{\circ \phi} - \varphi}{\varphi \rho s}, \tag{4}$$

где $\phi_{a\phi} = \phi(K - B - G^*), \rho$ – плотность, *s* – удельная поверхность.

При объемной доле наполнителя меньше 0.3 температура и удельная площадь поверхности наполнителя являются основными факторами, влияющими на межфазное взаимодействие между матрицей и минеральными наполнителями и толщину адсорбционного слоя. Чем выше температура, тем сильнее межфазное взаимодействие. Наполнитель с более высокой удельной поверхностью имеет более сильное межфазное взаимодействие с матрицей. Однако оценки чувствительности этих параметров к изменению температуры и частоты испытаний отличаются в работах различных авторов [20–22].

Влияние модификатора на межфазное взаимодействие битума и наполнителя представляет отдельный интерес [23, 24]. В зависимости от химической природы модификатора и наполнителя может наблюдаться конкуренция адсорбции асфальтенов битума и молекул модификатора на поверхности наполнителя. Так, в работе [25] показано, что толщина адсорбированного слоя увеличивалась при повышении температуры и снижении частоты, а также при использовании в качестве модификатора блок-сополимера стирола и бутадиена (SBS). В работе [26] значения $K-B-G^*$ для асфальтовых вяжущих, содержащих цемент, имели тенденцию к снижению с увеличением частоты.

Цель настоящей работы – исследование влияния активного порошка дискретно девулканизованной шинной резины (АПДДР), получаемого методом высокотемпературного сдвигового измельчения, на межфазное взаимодействие нефтяного окисленного битума марки БНД 60/90 и наполнителя (минерального порошка (МП) из карбонатных пород). Специфическая структура частиц АПДДР позволяет им при контакте с горячим битумом быстро распадаться на микро- и нано-фрагменты и при достаточной концентрации (вблизи порога перколяции) создавать однородную на микроуровне структуру битума [27, 28]. Таким образом, модифицированный АПДДР битум представляет собой матрицу для системы битумное вяжущее – минеральный порошок. Также ранее на основе традиционных эмпирических тестов и ротационных реологических испытаний было показано положительное влияние АПДДР на старение и релаксационные свойства битума и асфальтового вяжущего [29]. В настоящей работе оценка межфазного взаимодействия в асфальтовом вяжущем проведена при средних температурах, при которых в дорожном покрытии возникают усталостные трещины. В ходе осцилляционных испытаний (как в диапазоне линейной вязкоупругости, так и за его пределами), на примере несостаренных и RTFO-состаренных образцов были исследованы вязкоупругие свойства битума и асфальтового вяжущего, модифицированного битума и модифицированных асфальтовых вяжущих с разной последовательностью введения в битум модификатора и наполнителя.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе были использованы:

1) битум марки БНД 60/90 (Б) по ГОСТ 22245 [30]: глубина проникания иглы (пенетрация) при 25° C – 63×0.1 мм; температура размягчения по кольцу и шару – 48° C; температура хрупкости по Фраасу – -18° C; плотность – 1032 кг/м^3 ; групповой химический состав по методу жидкостно-адсорбционной хроматографии с градиентным вытеснением [31]: парафино-нафтеновые углеводороды 19%, ароматические углеводороды 33.3%, смолы 32.2%, асфальтены 15.6%;

2) наполнитель: неактивированный минеральный порошок марки МП-1 (МП) из карбонатных пород по ГОСТ Р 52129-2003 [32]; плотность 2710 кг/м³; удельная поверхность по сорбции азота (ВЕТ) 4.6 м²/г; диаметр мезопор 3.61 нм, средний размер пор 10.1–10.2 нм;

3) модификатор: активный порошок дискретно девулканизованной резины (АПДДР), полученный методом высокотемпературного сдвигового измельчения изношенных шин; параметры распределения частиц по размерам: $D_{50} = 230$ мкм, $D_{99} = 460$ мкм (по методу лазерной дифракции в водной среде по методике, описанной в работе [33]); плотность 970 кг/м³; удельная поверхность по сорбции азота (BET) 0.435 м²/г;

4) модифицированное вяжущее (MB) состава 87.5% битум + 12.5% АПДДР по массе, объемная доля модификатора в MB – 0.13;

5) асфальтовое вяжущее (AB) — массовое соотношение битум : $M\Pi = 1$: 1, объемная доля наполнителя в AB — 0.275;

6) тройные смеси битум-наполнитель-модификатор (модифицированные асфальтовые вяжущие):

• с введением модификатора после наполнителя: MAB — массовое соотношение (битум : $M\Pi = 1:1$) + 12.5% AПДДР по отношению к массе вяжущего, объемная доля наполнителя в MAB – 0.25;

• с введением модификатора до наполнителя: MBA состава (битум : $M\Pi = 1 : 1$) + 12.5% $A\Pi ДДP$ по отношению к массе вяжущего, объемная доля наполнителя в MBA – 0.25.

При приготовлении образцов MB, MAB и MBA было использовано соотношение битум : АПДДР = = 87.5 : 12.5, поскольку ранее оно было установлено как оптимальное с точки зрения улучшения реологических свойств битума во всем температурном интервале эксплуатации асфальтобетона [34].

АВ, МВ, МАВ и МВА готовили в температурно-временных условиях, приближенных к режиму приготовления асфальтобетонной смеси. Для этого в стакан с предварительно нагретым до 160°С битумом в течение приблизительно 30—60 с добавляли МП и/или АПДДР при постоянном перемешивании при скорости вращения мешалки 150–250 об./мин. При приготовлении МАВ АПДДР добавляли после введения минерального порошка, а при приготовлении МВА первым вводили АПДДР. Затем увеличивали скорость вращения мешалки до 600 об./мин и перемешивали вяжущее при температуре от 155 до 160°C в течение 2.5 мин.

Термоокислительное старение образцов выполняли по методу RTFO [35], имитирующему процесс приготовления, транспортировки и укладки асфальтобетонной смеси.

Реологические испытания выполняли для несостаренных и RTFO-состаренных образцов на реометре динамического сдвига "MCR 702e" ("Anton Paar") с использованием измерительной системы с параллельной геометрией пластин диаметром 8 мм; измерительный зазор во время испытаний составлял 2 мм. Расхождение измеряемых параметров от среднего значения не превышало 3–7%. Образцы отжигали в течение 8 мин при температурах 170°C (битум и MB) и 195°C (AB, MAB и MBA) с последующим разливом в силиконовые формы диаметром 8 мм. Испытания образцов выполняли не ранее 15 мин и не позднее 4 ч после их приготовления. Закладку образцов в реометр и их обрезку производили при 64°C.

Для определения диапазона линейной вязкоупругости (LVE-range) образцов выполняли амплитудную развертку в диапазоне деформации (γ) от 0.01 до 30% и угловой частоте (ω) 10 рад/с при температурах –10 и 10°С.

Для получения обобщенных кривых (Master Curve) выполняли частотную развертку в диапазоне частот от 0.1 до 100 рад/с при деформации (γ) 0.05% при температурах от 30 до –10°C с шагом 10°С. Деформация 0.05% была выбрана, т.к. она находится в LVE диапазоне для всех образцов при -10°С (минимальное значение LVE диапазона в данной серии образцов при -10°C наблюдалось для АВ и составляло 0.15%). Использовали один образец, который термостатировали после достижения заданной температуры испытаний в течение 20 мин. Обобщенные кривые получали с использованием программного обеспечения Rheo-Compas ("Anton Paar"). В качестве опорной при построении обобщенной кривой была использована температура +10°С. Дополнительные испытания RTFO-состаренных образцов выполняли при деформации (γ) 5% при температуре 10°C в диапазоне частот от 0.1 до 50 рад/с. Деформация 5% была выбрана, т.к. она находится за пределами LVE диапазона для всех образцов при 10°С (максимальное значение наблюдалось для битума и составляло 1%).

Рис. 1. Обобщенные кривые (Master Curve) зависимости комплексного модуля G^* от приведенной частоты ($\omega\alpha_T$) для несостаренных образцов: битум (1), MB (2); AB (3), MAB (4).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 для несостаренных образцов представлены обобщенные кривые зависимости комплексного модуля (G*) от приведенной частоты $(\omega \alpha_{\rm T})$, где $\alpha_{\rm T}$ – горизонтальный shift-factor. Как можно видеть, для AB кривая зависимости G^* от приведенной частоты располагается выше кривой битума, в то время как кривая МВ пересекает ее; модифицированные образцы как битума, так и асфальтового вяжущего демонстрируют повышенную жесткость при малых частотах (высоких температурах), что характерно при применении модификаторов на основе резины изношенных шин (а также ряда других модификаторов или наполнителей), и меньшую жесткость при высоких частотах (низких температурах) по сравнению с немодифицированными образцами, что коррелирует с выводами о снижении температуры стеклования и температуры растрескивания битума в результате модификации АПДДР, сделанными авторами в работе [36] при сравнительном исследовании битума и МВ. Кривая МВА лежит несколько выше кривой МАВ (на рис. 1 не представлена). Аналогичный характер кривых сохраняется и после RTFO старения.

На рис. 2 приведен график Van Gurp-Palmen (зависимость фазового угла от комплексного модуля), который позволяет оценить применимость принципа температурно-временной суперпозиции (temperature-time superposition – TTS) для исследованных вяжущих [36]. Как можно видеть из рис. 2a, битум демонстрирует реологически простое поведение только в температурном интервале от 10 до –10°С, и области частот менее 13 рад/с, где наблюдается удовлетворительное совмещение

кривых, полученных при этих температурах (см. рис. 2б). При более высоких температурах кривые нельзя совместить без вертикального сдвига, следовательно, для битума в данном интервале не соблюдается принцип TTS. Учитывая высокое содержание парафино-нафтеновых фракций в исследуемом битуме (19%), это можно связать с изменением структуры вяжущего, связанной с формированием кристаллов парафинов. Так, ранее при исследованиях данного битума методом ДСК при T = 288 К был отмечен пик, характерный для плавления кристаллов парафинов с длиной цепи порядка 16—19 единиц и энтальпией плавления ΔH порядка 8 Дж r^{-1} [37]. Такое же термореологически сложное поведение наблюдалось для всех образцов. Следует отметить, что кривые АВ лежат выше, а МВ ниже кривых битума. Также можно видеть, что при повышении температуры МВ и модифицированные асфальтовые вяжущие демонстрируют характерную для резино-битумных или полимербитумных вяжущих область плато [38, 39]. Однако если, по данным работы [39], при модификации СБС в количестве 4.5% плато наблюдается при фазовом угле приблизительно 65°, то модификация АПДДР снижает этот угол до 50°, что говорит о формировании трехмерной сетки во всех модифицированных образцах.

На рис. 3 представлены кривые зависимости параметров $K-B-G^*$ (а) и $K-B-\delta$ (б) от частоты (ш) при температуре 10°С для несостаренных и состаренных образцов АВ (где в качестве матрицы рассматривается битум), МАВ и МВА (где в качестве матрицы рассматривается МВ). Параметр взаимодействия, определяемый по комплексному модулю ($K - B - G^*$), для AB снижается при увеличении частоты и уменьшается при старении, а для модифицированных образцов слабо зависит от частоты и также уменьшается при старении. Можно отметить, что кривая МВА (введение наполнителя после модификатора) во всем диапазоне частот лежит выше кривой АВ как до, так и после старения, что говорит об увеличении межфазного взаимодействия в результате модификации, в то время как этот эффект менее выражен для МАВ. Параметр взаимодействия, определяемый по фазовому углу ($K-B-\delta$) для асфальтового вяжущего при старении уменьшается, а для МАВ и МВА растет. Последнее может отражать формирование трехмерной сетки модификатора, протекающее как в процессе приготовления образцов, так и в процессе RTFOстарения. Также можно отметить, что $K-B-\delta$ для АВ практически не зависит от частоты, а для модифицированных асфальтовых вяжущих демонстрирует сильную зависимость от частоты, причем при малых частотах лежит в области отрицательных значений.

На рис. 4 представлены графики зависимости толщины адсорбированного слоя (*d*) от частоты и температуры для несостаренного и RTFO-соста-

Рис. 2. График Van Gurp-Palmen (зависимость фазового угла (δ) от комплексного модуля (G^*)) (а) для интервала частот 0.1–100 рад/с, (б) для интервала частот 0.1–13 рад/с для RTFO-состаренных образцов: битум (I), MB (2); AB (3); MAB (4). Обозначения 30, 20, 10, 0 и –10 приведены для кривых, соответствующих температурам 30, 20, 10, 0 и –10°С.

ренного образца AB. Как можно видеть, толщина адсорбированного слоя для несостаренного образца более чувствительна к изменению частоты и температуры испытаний. Старение приводит к уменьшению толщины адсорбированного слоя при всех температурах и к уменьшению зависимости толщины от частоты и температуры. Также для состаренного AB можно видеть нарушение ранжирования кривых по температуре, касающееся значений при 30 и 20°С (кривые *1* и *2* на рис. 4б) при малых частотах, что, видимо, отражает изменение структуры вяжущего.

Влияние порядка введения наполнителя и модификатора на толщину адсорбированного слоя битума приведено на рис. 5, на котором представлены графики зависимости толщины адсорбированного слоя (*d*) от частоты и температуры для несостаренных и RTFO-состаренных образцов MAB (первым введен наполнитель) и MBA (первым введен модификатор). Полученные результаты позво-

Рис. 3. Зависимость параметров $K-B-G^*$ (а) и $K-B-\delta$ (б) от частоты (ω) при температуре 10°С при деформации $\gamma = 0.05\%$ для несостаренных образцов: AB (1); MAB (3), MBA (5) и RTFO-состаренных образцов AB (2); MAB (4), MBA (6) (использованы обозначения: (1, 2) круг, (3, 4) треугольник, (5, 6) квадрат; (1, 3, 5) незаполненные; (2, 4, 6) заполненные).

ляют предположить, что в формировании адсорбированного слоя принимает участие модификатор, конкурирующий с полярными фракциями битума, причем увеличение межфазного взаимодействия

Рис. 4. Зависимость толщины адсорбированного слоя от частоты для несостаренного (а) и RTFO-состаренного (б) образцов AB при температуре: 30 (*1*), 20 (*2*), 10 (*3*), 0 (*4*) и -10° C (*5*).

более выражено в случае предварительного введения модификатора в битум. В качестве элементов, которые могут включиться в этот процесс, можно назвать нанофрагменты распавшихся частиц модификатора, серу, которая конденсируется на поверхности частиц модификатора в процессе высокотемпературного сдвигового измельчения, а также другие полярные добавки, входящие в состав шинной резины и мигрирующие в вяжущее при их взаимодействии. На рисунках не представлены кривые при температурах 20 и 30°С, поскольку они носят противоречивый характер, что может быть связано, как указывалось выше, с изменением структуры вяжущего, связанным как с формированием кристаллов парафинов, так и с большим вкладом сетки модификатора при данных температурах. Отметим, что полученные результаты расчета толщины адсорбированного слоя коррелируют с результатами других исследователей [2, 3].

Деформации, испытываемые вяжущим в дорожных покрытиях, существенно превышают LVE-диапазон, поэтому дополнительные частотные испытания RTFO-состаренных образцов были проведены при деформации 5% при температуре 10°C.

Графики зависимости комплексного модуля (G^*) и тангенса фазового угла tg δ от частоты ω представлены на рис. 6. Кривые комплексного модуля (рис. 6а) для битума и MB; AB, MAB и MBA, как и при испытаниях в LVE-диапазоне, имеют пересечение: G* немодифицированных образцов оказывается ниже, чем G* образцов, содержащих АПДДР, при низких частотах и выше при более высоких. Как можно видеть из рис. 6б, кривые битума и АВ демонстрируют снижение tg δ при увеличении частоты испытаний; tg δ модифицированного вяжушего практически не зависит от частоты и находится вблизи значения $tg\delta = 1$, а кривые MAB и МВА проявляют слабую тенденцию к увеличению значения tg δ при увеличении частоты испытаний. При этом для образца МАВ, где введение минерального порошка предшествовало введению модификатора в битум, G^* и tg δ имеют во всем диапазоне частот большее значение по сравнению с образцом МВА, где введение модификатора и минерального порошка осуществлялось в обратном порядке. Отметим, что при деформации 0.05% при данной температуре комплексный модуль был выше для образца МВА. Соответственно, и параметр $K - B - G^*$ был выше для образца МВА во всем диапазоне частот (см. рис. 3а). Можно также отметить, что при увеличении деформации с 0.05 до 5% наблюдалось снижение параметра К-В-G* для состаренных образцов: АВ с 1.8–1.6 до 1.15–0.8, МАВ – с ~1.7 до 1.4–1, MBA - с ~2.2 до 1.2-0.8 (см. рис. За и 7а). Полученный результат можно интерпретировать как то, что структура межфазного слоя в образце МВА (модификатор введен до наполнителя) более чувствительна к воздействию высоких деформаций. Параметр $K - B - \delta$ при деформации 5% имеет отрицательные значения для всех образцов (рис. 7б), поскольку кривые tgδ битума и AB, лежат выше кривых МВ, МАВ и МВА (см. рис. 6).

Рис. 5. Зависимость толщины адсорбированного слоя (d) от частоты для несостаренного (a) и RTFO-состаренного (б) образцов: МАВ при температуре: 10 (*1*), 0 (*2*) и -10° C (*3*) и MBA 10 (*4*), 0 (*5*) и -10° C (*6*).

Влияние старения, последовательности введения модификатора и наполнителя и деформации на толщину адсорбированного слоя при температуре 10°С и характерных частотах 0.1 и 10 рад/с представлено в табл. 1. Как можно видеть, в образцах MBA (модификатор введен до наполнителя) во всех случаях значение толщины адсорбированного слоя на поверхности наполнителя больше,

Рис. 6. Зависимость комплексного модуля (G^*) (а) фазового угла tg δ (б) от частоты ω при деформации $\gamma = 5\%$ при температуре 10°С для RTFO-состаренных образцов: (1) битум; (2) MB; (3) AB; (4) MAB; (5) MBA.

чем в образцах AB, и больше, чем в образцах MAB в LVE-диапазоне. Однако за пределами LVE-диапазона (при деформации 5%) чувствительность структуры межфазного слоя в образцах MAB меньше, чем в образцах MBA.

В дальнейшем предполагается проведение исследований асфальтовых вяжущих и модифици $\zeta - B - G^*$

Рис. 7. Зависимость параметров $K-B-G^*$ (а) и $K-B-\delta$ (б) от частоты (ω) при температуре 10°С при деформации $\gamma = 5\%$ для RTFO-состаренных образцов AB (I); MAB (2), MBA (3).

рованных вяжущих, приготовленных на битумах различного группового химического состава.

ЗАКЛЮЧЕНИЕ

Полученные в работе результаты показали, что межфазное взаимодействие (оцениваемое по параметру взаимодействия $K-B-G^*$), а, следовательно, и расчетная толщина адсорбированного слоя:

– уменьшаются при старении для образцов AB, MAB и MBA;

– уменьшаются с ростом частоты для несостаренного и RTFO-состаренного образцов AB;

 – слабо зависят от частоты для несостаренных и RTFO-состаренных образцов MAB и MBA;

– для несостаренного и RTFO-состаренного образцов MBA (модификатор введен до наполнителя) межфазное взаимодействие и толщина адсорбированного слоя превышают аналогичные показатели асфальтового вяжущего во всем диапазоне частот, а соотношение этих показателей для AB и MAB (модификатор введен после наполнителя) зависит от частоты.

Полученные результаты позволяют предположить, что не только асфальтены, но и компоненты модификатора АПДДР принимают участие в образовании адсорбированного слоя вяжущего на поверхности наполнителя, а именно: нанофрагменты распавшихся частиц АПДДР; сера, которая конденсируется на поверхности частиц модификатора в процессе высокотемпературного сдвигового измельчения; а также другие полярные добавки, входящие в состав шинной резины и мигрирующие в вяжущее при их взаимодействии.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания Минобрнауки России (ФИЦ ХФ РАН тема № 122040400099-5).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

Таблица 1. Толщина адсорбированного слоя на поверхности наполнителя при температуре 10°С

	Толщина адсорбированного слоя битума (d), нм					
Частота	ω=0.1 рад/с			ω = 10 рад/с		
Образец	AB	MAB	MBA	AB	MAB	MBA
		Дефор	мация 0.05%			
Несостаренный	93	84	112	74	87	110
RTFO-состаренный	61	59	97	52	61	97
		Дефо	ормация 5%			
RTFO-состаренный	3	25	8	<0	2	<0

СПИСОК ЛИТЕРАТУРЫ

1. Davis C., Castorena C. Implications of physico-chemical interactions in asphalt mastics on asphalt microstructure // Construction and Building Materials. 2015. V. 94. P. 83-89.

https://doi.org/10.1016/j.conbuildmat.2015.06.026

2. Wu W., Jiang W., Yuan D., Lu R., Shan J., Xiao J., Ogbon A.W. A review of asphalt-filler interaction: Mechanisms, evaluation methods, and influencing factors // Construction and Building Materials. 2021. V. 299. P. 124279.

https://doi.org/10.1016/j.conbuildmat.2021.124279

- 3. Li F., Yang Y., Wang L. Evaluation of physicochemical interaction between asphalt binder and mineral filler through interfacial adsorbed film thickness // Construction and Building Materials. 2020. V. 252. P. 119135. https://doi.org/10.1016/j.conbuildmat.2020.119135
- 4. Rahim A., Milad A., Yusoff N.J., Airev G., Nick Thom N. Stiffening effect of fillers based on rheology and micromechanics models // Applied Sciences. 2021. V. 11. № 14. P. 6521.

https://doi.org/10.3390/app11146521

5. Kim M., Buttlar W.G. Stiffening mechanisms of asphalt-aggregate mixtures: From binder to mixture // Transportation Research Record. 2010. V. 2181. № 1. P. 98-108.

https://doi.org/10.3141/2181-11

6. Clopotel C., Velasquez R., Bahia H. Measuring physicochemical interaction in mastics using glass transition // Road Materials and Pavement Design. 2012. V. 13. № 1. P. 304-320.

https://doi.org/10.1080/14680629.2012.657095

7. Underwood B.S. Experimental investigation into the multiscale behaviour of asphalt concrete // International Journal of Pavement Engineering. 2011. V. 12. № 4. P. 357-370.

https://doi.org/10.1080/10298436.2011.574136

- 8. Cardone F., Frigio F., Ferrotti G., Canestrar F. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics // Journal of Traffic and Transportation Engineering (English Edition). 2015. V. 2. № 6. P. 373-381. https://doi.org/10.1016/j.jtte.2015.06.003
- 9. Dong Z., Liu Z., Wang P., Zhou T. Modeling asphalt mastic modulus considering substrate-mastic interaction and adhesion // Construction and Building Materials. 2018. V. 166. P. 324-333. https://doi.org/10.1016/j.conbuildmat.2018.01.140
- 10. Guo M., Bhasin A., Tan Y. Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder // Construction and Building Materials. 2017. V. 141. P. 152-159. https://doi.org/10.1016/j.conbuildmat.2017.02.051
- 11. Alfagawi R.M., Airey G.D., Presti D.Lo, Grenfell J. Effects of mineral fillers on bitumen mastic chemistry and rheology // In: Transport Infrastructure and Systems 2017. Proceedings of the AIIT International Congress on Transport Infrastructure and Systems (TIS 2017), Rome, Italy, 10-12 April 2017. P. 359-364. https://doi.org/10.1201/9781315281896-48
- 12. Moraes R., Bahia H.U. Effect of mineral filler on changes in molecular size distribution of asphalts

КОЛЛОИДНЫЙ ЖУРНАЛ 2023 том 85 Nº 6

during oxidative ageing // Road Materials and Pave-ment Design. 2015. V. 16. № S2. P. 55-72. https://doi.org/10.1080/14680629.2015.107699

- 13. Tan Y., Guo M. Interfacial thickness and interaction between asphalt and mineral fillers // Materials and Structures. 2014. V. 47. P. 605-614. https://doi.org/10.1617/s11527-013-0083-8
- 14. Diab A., You Z. Linear and nonlinear rheological properties of bituminous mastics under large amplitude oscillatory shear testing // Journal of Materials in Civil Engineering. 2018. V. 30. № 3. P. 04017303. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002179
- 15. Guo M., Tan Y.O., Yu J.X., Hou Y., Wang L.B. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy // Materials and Structures. 2017. V. 50. P. 141. https://doi.org/10.1617/s11527-017-1015-9
- 16. Xu W., Qiu X., Xiao S., Hong H., Wang F., Yuan J. Characteristics and mechanisms of asphalt-filler interactions from a multi-scale perspective // Materials. 2020. V. 13. № 12. P. 2744. https://doi.org/10.3390/ma13122744
- 17. Palierne J.F. Linear rheology of viscoelastic emulsions with interfacial-tension // Rheologica Acta. 1990. V. 29. № 3. P. 204-214. https://doi.org/10.1007/BF01331356
- 18. Ziegel K.D., Romanov A. Modulus reinforcement in elastomer composites. I. Inorganic fillers // Journal of Applied Polymer Science. 1973. V. 17. № 4. P. 1119-1131. https://doi.org/10.1002/app.1973.070170410
- 19. Ibarra L., Panos D. Dynamic properties of thermoplastic butadiene-styrene (SBS) and oxidized short carbon fiber composite materials // Journal of Applied Polymer Science. 1998. V. 67. № 10. P. 1819–1826. https://doi.org/10.1002/(SICI)1097-4628(19980307) 67:10<1819::AID-APP15>3.0.CO;2-R
- 20. Liu G., Zhao Y., Zhou J., Li J., Yang T., Zhan J. Applicability of evaluation indices for asphalt and filler interaction ability // Construction and Building Materials. 2017. V. 148. P. 599-609. https://doi.org/10.1016/j.conbuildmat.2017.05.089
- 21. Guo M., Tan Y., Hou Y., Wang L., Wang Y. Improvement of evaluation indicator of interfacial interaction between asphalt binder and mineral fillers // Construction and Building Materials. 2017. V. 151. P. 236-245. https://doi.org/10.1016/j.conbuildmat.2017.05.003
- 22. Guo M., Tan Y. Interaction between asphalt and mineral fillers and its correlation to mastics'viscoelasticity // International Journal of Pavement Engineering. 2021. V. 22. № 1. P. 1–10. https://doi.org/10.1080/10298436.2019.1575379
- 23. Frigio F., Ferrotti G., Cardone F. Fatigue Rheological characterization of polymer-modified bitumens and mastics // In: 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. 2016. V. 11. P. 655-666. https://doi.org/10.1007/978-94-017-7342-3 53
- 24. Mazzoni G., Virgili A., Canestrari F. Influence of different fillers and SBS modified bituminous blends on fatigue, self-healing and thixotropic performance of mastics // Road Materials and Pavement Design. 2019.

V. 20. № 3. P. 656–670. https://doi.org/10.1080/14680629.2017.1417150

25. Li F., Yang Y. Understanding the temperature and loading frequency effects on physicochemical interaction ability between mineral filler and asphalt binder using molecular dynamic simulation and rheological experiments // Construction and Building Materials. 2020. V. 244. P. 118311.

https://doi.org/10.1016/j.conbuildmat.2020.118311

 Chen M., Javilla B., Hong W., Pan C., Riara M., Mo L., Guo M. Rheological and interaction analysis of asphalt binder, mastic and mortar // Materials. 2019. V. 12. № 1. P. 128.
 https://doi.org/10.2200/mo.12010128

https://doi.org/10.3390/ma12010128

- Nikol'skii V., Dudareva T., Krasotkina I., Gordeeva I., Vetcher A.A., Botin A. Ultra-dispersed powders produced by high-temperature shear-induced grinding of worn-out tire and products of their interaction with hot bitumen // Polymers. 2022. V. 14. № 17. P. 3627. https://doi.org/10.3390/polym14173627
- 28. Nikol'skii V., Dudareva T., Krasotkina I., Gordeeva I., Gorbativa V., Vetcher A.A., Botin A. Mechanism of multi-stage degradation in hot bitumen of micronized Elastomeric Powder Modifiers from worn-out tire's rubber // Polymers. 2022. V. 14. № 19. P. 4112. https://doi.org/10.3390/polym14194112
- 29. Никольский В.Г., Красоткина И.А., Дударева Т.В., Горелышева Л.А., Гарманов В.Н. Влияние старения и модификации на релаксационные свойства нефтяного дорожного битума и асфальтового вяжущего // Клеи. Герметики. Технологии. 2022. № 10. С. 31–39.

https://doi.org/10.31044/1813-7008-2022-0-10-31-39

- ГОСТ 22245-90. Битумы нефтяные дорожные вязкие. Технические условия
- Методика измерений группового химического состава тяжелых нефтепродуктов методом жидкостно-адсорбционной хроматографии с градиентным вытеснением. Уфа, 2014. 18 с.
- ГОСТ Р 52129-2003. Порошок минеральный для асфальтобетонных и органоминеральных смесей. Технические условия

 Gordeeva I.V., Dudareva T.V., Krasotkina I.A., Nikol'skii V.G., Naumova Yu.A., Sinkevich M.Yu., Lobachev V.A. Methodological aspects of evaluating the particle size distribution of powder elastomeric materials // Key Engineering Materials. 2021. V. 899. P. 58–66.

https://doi.org/10.4028/www.scientific.net/KEM.899.58

- 34. Berlin A.A., Nikolskiy V.G., Krasotkina I.A., Dudareva T.V., Gorbarova V.N., Gordeeva I.V., Sorokin A.V., Lobachev V.A., Dubina S.I., Sinkevich M.Yu. Rubber and rubber-polymer modifiers of asphalt concrete mixtures produced by method of high-temperature shear grinding. Part 3. Evaluation of modification efficiency // Polymer Science, Ser. D. 2022. V. 15. № 1. P. 71–78. https://doi.org/10.1134/S199542122201004X
- 35. ГОСТ 33140-2014. Дороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Метод определения старения под воздействием высокой температуры и воздуха (метод RTFOT). [AASHTO T 240-13 Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test)] (2017).
- Laukkanen O.V., Soenen H., Winter H.H., Seppälä J. Low-temperature rheological and morphological characterization of SBS modified bitumen // Construction and Building Materials. 2018. V. 179. P. 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160
- 37. Gorbatova V.N., Gordeeva I.V., Dudareva T.V., Krasotkina I.A., Nikol'skii V.G., Egorov V.M. Effect of the active powder of discretely devulcanized rubber on bitumen properties at low temperatures // Nanotechnologies in Construction. 2023. V. 15 № 1. P. 72–83. https://doi.org/10.15828/2075-8545-2023-15-1-72-83
- Ma X., Chen H., Gui C., Xing M., Yang P. et al. Influence of the properties of an asphalt binder on the rheological performance of mastic // Construction and Building Materials. 2019. V. 227. P. 116659. https://doi.org/10.1016/j.conbuildmat.2019.08.040
- Mturi G., O'Connell J., Zoorob S.E., De Beer M. A study of crumb rubber modified bitumen used in South Africa // Road Materials and Pavement Design. 2014. V. 15. № 4. P. 774–790. https://doi.org/10.1080/14680629.2014.910130