УДК 544.77

НОВЫЕ ПОЛИФУНКЦИОНАЛЬНЫЕ БИАМФИФИЛЬНЫЕ ПАВ НА ОСНОВЕ АЛКИЛМЕТИЛМОРФОЛИНИЯ И ДОДЕЦИЛСУЛЬФАТ-АНИОНА

© 2024 г. Д. М. Кузнецов*, Д. А. Кузнецова, Ф. Г. Валеева, Л. Я. Захарова

Институт органической и физической химии им. А. Е. Арбузова ФИЦ Казанский научный центр РАН, ул. Акад. Арбузова, 8, Казань, 420088 Россия

> *e-mail: kuznetsov_denis91@mail.ru Поступила в редакцию 30.09.2023 г. После доработки 07.11.2023 г. Принята к публикации 09.11.2023 г.

Синтезированы новые биамфифильные поверхностно-активные вещества (БПАВ) на основе катиона алкилметилморфолиния и додецилсульфат-аниона (Мор- $n(\Delta C)$, n = 4, 6, 8, 10). С привлечением методов ИК-спектроскопии, спектроскопии ЯМР¹Н, масс-спектрометрии, элементного анализа охарактеризована структура биамфифилов. Методами тензиометрии, кондуктометрии, флуоресцентной спектроскопии (с использованием зонда пирена), динамического и электрофоретического рассеяния света проведена оценка агрегационного поведения биамфифилов в водных растворах. Показано, что увеличение длины углеводородного радикала на два углеродных атома у амфифильного катиона приводит к увеличению поверхностной активности ПАВ ~ на 5 единиц и к снижению порога агрегации систем в 1.5–2 раза. Установлено, что происходит формирование агрегатов с гидродинамическим диаметром 20-120 нм в зависимости от длины радикала у катиона алкилметилморфолиния и от концентрации БПАВ. Дзета-потенциал систем находится в диапазоне от -25 до -100 мВ и снижается с увеличением концентрации биамфифилов. Методом спектрофотомерии показана значительная солюбилизационная способность биамфифилов по отношению к гидрофобному красителю Оранж ОТ. Полученные соединения могут представлять интерес для биомедицинского применения и других высокотехнологичных направлений.

Ключевые слова: биамфифильные поверхностно-активные вещества, самоорганизация, катион морфолиния, додецилсульфат-анион, солюбилизация.

DOI: 10.31857/S0023291224010088

введение

Поверхностно-активные вещества (ПАВ) привлекают значительное внимание исследователей в связи с их потенциальным применением во многих областях, таких как фармацевтика, медицина, сельское хозяйство, нефтяная промышленность, косметика, катализ и т.д. [1-8]. Основной акцент при поиске новых амфифильных систем направлен на создание нетоксичных ПАВ или эффективных систем на их основе, действующих в мягких условиях, обладающих низкими порогами агрегации, биосовместимостью, биоразлагаемостью и способностью преодолевать биологические барьеры [9, 10]. В настоящее время большой интерес вызывают системы на основе катионных и анионных ПАВ (катанионные системы) [8]. Это связано с тем, что между компонентами системы возникает эффект сильного синергизма, обусловленный

электростатическим взаимодействием между противоположно заряженными головными группами молекул ПАВ, что проявляется в их большей поверхностной активности, более низкой критической концентрации мицеллообразования (ККМ) и улучшенных реологических свойствах по сравнению с исходными амфифилами [11, 12]. Чтобы снизить влияние противоионов в смешанных катанионных системах, осуществлен переход от смешанных систем к биамфифильным ПАВ (также называют биамфифильные ионные жидкости). Биамфифильные ПАВ (содержащие амфифильный катион и анион) мало изучены, но известно, что они обладают всеми преимушествами смешанных катанионных систем и при этом имеют более простой состав, пониженную токсичность и являются биоразлагаемыми. Также данные соединения обладают улучшенной агрегационной активностью, коллоидной стабильностью, разнообразным

морфологическим поведением и повышенной солюбилизационной способностью [8, 13]. Стоит отметить, что биамфифильные ПАВ проявляют амфифильное поведение, когда число углеродных атомов в катионной и в анионной частях превышает четыре [14]. Согласно литературным данным, в настоящее время все исследования сосредоточены на биамфифилах с имидазолиевым катионом и различными амфифильными анионами. Группой Кумара были исследованы биамфифильные ПАВ с имидазолиевыми катионами и алкилсульфатными анионами [15, 16]. Было показано, что биамфифильные ПАВ снижают поверхностное натяжение в растворах значительно сильнее по сравнению с аналогичными одноцепочечными ПАВ. Методами ЯМР и ТЭМ установлено, что эти соединения образуют различные агрегированные структуры в зависимости от амфифильного характера катиона и аниона. На основе данных соединений были получены наночастицы и микропластинки золота [15], также они были испытаны в качестве стабилизаторов ферментов в моющих средствах [16]. Другие авторские группы также исследовали биамфифилы на основе катиона имидазолия и додецилсульфат-аниона, но в смеси с анионными ПАВ (диоктилсульфосукцинат натрия) [17], катионными ПАВ (цетилтриметиламмоний бромид) [18] и циклодекстринами [19]. Варьированием доли компонентов в системах авторам удалось в широком диапазоне изменять и изучить морфологическое поведение систем. Авторская группа Канга синтезировала и исследовала биамфифильные соединения на основе катиона имидазолия и различных амфифильных противоионов (дезоксихолата, 4-гидроксибензолсульфоната, бензолсульфоната, и п-толуолсульфоната) [20, 21]. Для различных систем наблюдалось разнообразие агрегатов (сферические мицеллы, частично вытянутые или длинные стержневидные мицеллы, везикулы, нанолисты, наностержни) в зависимости от природы анионов и длины гидрофобной части у катиона. Также этой группой были созданы новые водные микроэмульсии на основе биамфифилов (катион имидазолия и анион диоктилсульфосукцината) в качестве каталитического реактора для цитохрома С [22].

Таким образом, тематика биамфифильных ПАВ является перспективной, но малоизученной областью. Поэтому синтез и исследование новых биамфифильных соединений позволят не только расширить фундаментальные знания в этой области, но и создать новые конкурентоспособные супрамолекулярные системы для различных биомедицинских приложений. В рамках представленной работы были получены новые биамфифильные ПАВ на основе катиона алкилметилморфолиния и додецилсульфат-аниона (Мор-n(ДС), где n = 4, 6, 8, 10). Структура соединений охарактеризована методами спектроскопии ЯМР ¹Н, ИК-спектроскопии, масс-спектрометрии и элементного анализа (рис. П1-П16). Проведена оценка агрегационных и солюбилизационных свойств для синтезированных БПАВ. Выбор данных систем обусловлен тем, что наличие гетероатома в катионе алкилметилморфолиния дает возможность устанавливать дополнительные связи в процессах адсорбции, мицеллообразования и солюбилизации [23], а додецилсульфат-анион считается полностью безопасным, биосовместимым и биоразлагаемым [24]. Структура Мор-n(ДС) (где n = 4, 6, 8, 10) представлена ниже.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе применяли коммерческие реактивы: метилморфолин (Acros, 99%), алкилбромиды (Sigma-Aldrich, >98%), додецилсульфат натрия (AppliChem, 99%), Оранж ОТ (Sigma-Aldrich, 95%), пирен (Sigma-Aldrich, 99%), цетилпиридиний бромил (Applichem, 99%). Коммерчески лоступные растворители (ацетонитрил, этилацетат, диэтиловый эфир) перед использованием очищали по стандартным процедурам. Масс-спектры ионизации электрораспылением (ИЭР) получены на масс-спектрометре AmazonX (Bruker Daltonik GmbH, Германия) с ионной ловушкой. ИК-спектры записывались на спектрометре Tensor 27 Bruker (Германия) в таблетках КВг. Элементный анализ осуществлялся на CHNS анализаторе EuroEA3028-HT-OM производства "Eurovector SpA" (Италия). ЯМР ¹Н спектры записаны на приборах AVANCE-600 и AVANCE-400 (Bruker, Germany).

Синтез биамфифильных ПАВ

Исходные алкилметилморфолиний бромиды были получены по реакции метилморфолина с соответствующим алкилбромидом в ацетонитриле с последующей перекристаллизацией продукта реакции из этилацетата [25, 26]. 4-алкил-4-метилморфолиний додецилсульфаты были получены по методике, описанной для синтеза имидазолиевых биамфифильных ПАВ [15, 27].

Общая методика получения 4-алкил-4-метилморфолиний додецилсульфатов. К раствору 1 г (1.1 экв.), соответствующего алкилметилморфолиний бромида в 25 мл дистиллированной воды, добавляли додецилсульфат натрия (1 экв.). Раствор

перемешивали при 80°С в течение 2 лней. После завершения реакции воду удаляли в вакууме роторного испарителя, к остатку добавляли CHCl₃, удаляли NaBr, органическую фазу экстрагировали дистиллированной водой до полного удаления бромид-ионов. Отсутствие ионов брома проверяли добавлением нескольких капель 0.1 М раствора AgNO₃ к водной фазе. Органическую фазу сушили над Na₂SO₄ и отфильтровывали. Фильтрат упаривали в вакууме роторного испарителя, остаток растирали в диэтиловом эфире или перекристаллизовывали из этилацетата и отфильтровывали. Конечный продукт сушили в вакууме водоструйного насоса (15 мм рт. ст.) на водяной бане (35°С). Структуры соединений охарактеризовали методами спектроскопии ЯМР ¹Н, ИК-спектроскопии, масс-спектрометрии (рис. П1–П16) и элементного анализа. Характеристики полученных веществ приведены в Приложении.

Методы исследования

Поверхностное натяжение растворов биамфифильных ПАВ определяли методом отрыва кольца с использованием тензиометра Krűss K06 (Германия) [28] при 25°С.

Удельную электропроводность измеряли с помощью кондуктометра Inolab Cond 720 при 25°С. Учитывали значения удельной электропроводности с отклонением не более ± 1 мкСм/см.

Регистрацию эмиссионных спектров флуоресценции пирена (1·10⁻⁶ моль/л) проводили на спектрофлуориметре Hitachi F-7100 (Япония) при температуре 25°С. Толщина кюветы составляла 1 см. Длина возбуждающего излучения составляла 335 нм. Спектры испускания регистрировали в диапазоне 350–500 нм [29].

Для расчета чисел агрегации использовали тушитель флуоресценции — цетилпиридиний бромид (ЦПБ). Для расчетов брали значение интенсивности флуоресценции при 394 нм. Числа агрегации (*N*) определяли с помощью уравнения (1):

$$N = (C - KKM)\ln(I_0 / I) / [\Pi\Pi B], \qquad (1)$$

где I_0 и I – интенсивности флуоресценции пирена в отсутствие и присутствии тушителя соответственно, C – концентрация ПАВ, [ЦПБ] – концентрация тушителя (ЦПБ).

Для определения эффективного гидродинамического диаметра ($D_h = 2R_h$) и дзета-потенциала частиц (ζ) использовали метод динамического и электрофоретического рассеяния света. Измерения проводили на характеризаторе наночастиц Malvern Zetasizer Nano (Великобритания). Источником лазерного излучения выступал He-Ne газовый лазер мощностью 4 мВт и длиной волны 633 нм. Измерения выполняли при угле рассеяния 173°. Полученные сигналы анализировали с помощью программного обеспечения Malvern DTS на основании уравнения Стокса–Эйнштейна для сферических частиц (2):

$$D = kT / 6\pi\eta R_h, \tag{2}$$

где D – коэффициент поступательной диффузии, k – константа Больцмана, T – абсолютная температура, η – вязкость растворителя, R_h – гидродинамический радиус [30].

Измерения электрофоретической подвижности частиц были автоматически преобразованы прибором в значение дзета-потенциала (ζ) с использованием уравнения Гельмгольца–Смолуховского (3):

$$\zeta = \mu \eta / \varepsilon, \tag{3}$$

где η – динамическая вязкость жидкости, μ – подвижность частиц, ϵ – диэлектрическая постоянная [31].

Солюбилизирующую способность БПАВ изучали на спектрофотометре Specord PLUS фирмы Analytik Jena (Германия). Для этого в раствор БПАВ определенной концентрации добавляли избыток кристаллического красителя Оранж ОТ (1-[(2-метилфенил)азо]-2-нафтол), и систему термостатировали 48 ч при комнатной температуре. Затем измеряли оптическую плотность полученных растворов при длине волны 495 нм (максимум поглощения Оранж ОТ). Коэффициент экстинкции красителя составлял 17400 л.моль-1.см-1 [32]. Солюбилизационная емкость (S) была вычислена на основании концентрационных зависимостей оптической плотности (A) по уравнению $S = b/\varepsilon$, где b – наклон зависимости A/l = f(C), l – толщина кюветы, C – концентрация ПАВ, ε – коэффициент экстинкции.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Важнейшей особенностью поверхностно-активных веществ в водных растворах является способность формировать агрегаты выше критической концентрации мицеллообразования (ККМ). ККМ представляет собой один из наиболее важных физико-химических параметров, который необходимо определять для новых амфифильных соединений [33-36]. Поэтому на первом этапе работы для биамфифильных ПАВ были определены пороги агрегации методами тензиометрии, кондуктометрии и флуоресцентной спектроскопии. В методах тензиометрии и кондуктометрии за ККМ принимается точка перегиба на соответствующих концентрационных зависимостях (рис. 1, рис. П17 (Приложение)). На рис. 1 представлены изотермы поверхностного натяжения водных растворов Мор-n(ДС).

Видно, что с увеличением длины углеводородного радикала на 2 углеродных атома у амфифильного катиона алкилметилморфолиния происходит снижение ККМ примерно в 2 раза (табл. 1), что отличается от традиционных катионных и анионных амфифилов (для них наблюдается снижение ККМ в 3-4 раза) [29, 30, 37]. Подобное явление, вероятно, связано с тем, что величина ККМ в данных соединениях определяется додецилсульфат-анионом, а катион морфолиния действует как противоион [21]. При этом катион-морфолиния обладает собственной гидрофобностью и может выступать в качестве вспомогательного ПАВ, образуя с додецилсульфат-анионом смешанные агрегаты [21]. Стоит отметить, что полученные значения ККМ для биамфифильных ПАВ значительно ниже, чем у индивидуального анионного ПАВ додецилсульфата натрия (ДСН, ~ 8 ммоль/л) [38, 39]. Это отражает благоприятное синергетическое взаимодействие молекул, которое вызвано электростатическими взаимодействиями и его доминированием над противоположными силами гидратации. Значения ККМ, полученные методом кондуктометрии, соответствуют тензиометрическим данным (табл. 1, рис. П17 (Приложение)).

Дополнительно для определения ККМ в водных растворах биамфифильных ПАВ был привлечен метод флуоресцентной спектроскопии с использованием пирена в качестве зонда. Пирен имеет пять специфических эмиссионных полос в спектре флуоресценции. Первый (*I*₁=373 нм) и третий (*I*_{III}=384 нм) пики чувствительны к изменению микроокружения среды [40]. Переход гидрофобного пирена из водной фазы в аполярную мицеллярную псевдофазу с увеличением концентрации ПАВ приводит к сигмоидальному уменьшению отношения I_I/I_{III} в области ККМ. За величину ККМ в данном методе принимается та концентрация ПАВ, при которой на зависимости I_I/I_{III} от концентрации ПАВ наблюдается перегиб либо та точка, которая делит участок резкого снижения значений *I*_{*I*}/*I*_{*III*} пополам [40]. Согласно данным работы [41] с учетом относительной ширины сигмоиды, был выбран второй вариант. Значения ККМ, взятые по середине участка снижения I_I/I_{III} , соответствуют значениям ККМ, полученными другими методами (рис. 2, табл. 1).

Методом флуоресцентной спектроскопии также можно определять числа агрегации мицелл в водных растворах. Наряду с размером и формой мицеллярного агрегата этот параметр предоставляет важную информацию о мицеллярной структуре. Число агрегации (*N*) показывает количество молекул ПАВ, входящих в одну мицеллу. С целью оценки чисел агрегации для Мор-п(ДС) проводились флуоресцентные эксперименты с использованием тушителя флуоресценции – цетилпиридиний бромида (ЦПБ). На рис. П18-П21 в Приложении

Рис. 1. Изотермы поверхностного натяжения водных растворов биамфифилов Мор-п(ДС): черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Рис. 2. Зависимость отношения интенсивностей флуоресценции первого (373 нм) и третьего (384 нм) колебательных пиков пирена от концентрации би-амфифилов для бинарных систем Mop-n(ДС)/пи-рен: черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

приведены спектры флуоресценции пирена для Mop-n(\mathcal{AC}) в присутствии различных концентраций тушителя. Вычисленные числа агрегации представлены в табл. 2. Видно, что для всех членов гомологической серии происходит рост N с увеличением концентрации БПАВ. Стоит отметить, что для \mathcal{ACH} увеличение концентрации амфифила также приводило к линейному росту N (в диапазоне от 29 до 67) [42].

Методы динамического и электрофоретического рассеяния света (ДРС и ЭРС) использовали

ПАВ	ККМ, ммоль/л					
	Тензиометрия	Кондуктометрия	Флуориметрия	Спектрофотометрия		
Mop-4(ДC)	2	2.4	2.1	3		
Мор-6(ДC)	1	1	1	1.2		
Mop-8(ДC)	0.5	0.54	0.4	0.6		
Мор-10(ДС)	0.2	0.2	0.15	0.25		

Таблица 1. Значения критической концентрации мицеллообразования для гомологического ряда Мор-*n*(ДС), определенные различными методами

Таблица 2. Числа агрегации N ассоциатов Мор-n(ДС) при различных концентрациях биамфифилов

Концентрация, ммоль/л	N				
	Mop-4(ДC)	Мор-6(ДС)	Мор-8(ДС)	Мор-10(ДС)	
0.5	-	-	-	28	
0.8		-		30	
1	-	-	21	34	
3	49	62	53	-	
5	68	76	77	-	
7	70	78	-	-	

для оценки размеров и зарядов агрегатов, образующихся в водных растворах Mop- $n(\square C)$. На рис. 3 представлена информация о размере агрегатов для всех исследуемых систем. Показано, что для биамфифила Мор-4(ДС) происходит формирование крупных агрегатов с гидродинамическим диаметром ~ 80–110 нм на всем диапазоне концентраций. \square ля систем Mop-6(\square C). Mop-8(\square C) и Mop-10(\square C) характерно образование частиц с гидродинамическим диаметром от 10 до 100 нм в зависимости от концентрации БПАВ. Тенденция увеличения размеров агрегатов с увеличением концентрации БПАВ хорошо согласуется с изменением чисел агрегации, которые также возрастают при увеличении концентрации амфифилов (табл. 2). Однако размеры агрегатов зависят не только от чисел агрегации, но и от строения ПАВ (головной группы и гидрофобности), геометрии молекулы и плотности упаковки молекул в агрегатах. Можно предположить, что общая тенденция, связанная с возможностью образования небольших агрегатов при переходе от Мор-4(ДC) к Мор-10(ДC), может определяться параметром упаковки, прогнозирующим увеличение кривизны поверхности агрегатов с увеличением длины алкильного радикала [43]. Согласно литературным данным, биамфифильные ПАВ обладают различным морфологическим поведением. Они могут образовывать мицеллы различного типа (сферические, цилиндрические, червеобразные) и везикулярные структуры [15, 18, 21,

44]. В работе [15] для аналогичных биамфифильных ПАВ, но с катионом имидазолия проводили оценку морфологии частиц методами ЯМР и просвечивающей электронной микроскопии (ПЭМ). Показано, что БПАВ с числом углеродных атомов у катиона имидазолия 4 и 6 образуют крупные межмицеллярные агрегаты сферической формы, а для БПАВ с октильным радикалом у катиона имидазолия характерно образование везикулярных структур. Однако в случае биамфифилов с катионом морфолиния результаты могут быть другими, поэтому для установления морфологии частиц исследуемых БПАВ необходимо привлечение дополнительных методов.

Измерение электрокинетического потенциала частиц показало, что по мере увеличения концентрации биамфифильных ПАВ происходит снижение дзета-потенциала. Подобное снижение, вероятно, связано с увеличением количества молекул ПАВ в агрегатах. Максимальные значения дзета-потенциала составляют: –95 мВ для Мор-4(ДС), –65 мВ для Мор-6(ДС), –62 мВ для Мор-8(ДС), –54 мВ для Мор-10(ДС) (рис. 4).

Плохая растворимость гидрофобных соединений, обладающих биологической активностью, является одним из ключевых лимитирующих факторов для их успешного применения в медицине, фармакологии, сельском хозяйстве и т.д. [45, 46]. Поверхностно-активные вещества играют важную роль в растворении широкого

Рис. 3. Распределение агрегатов по размерам, усредненное по числу частиц, для водных растворов Мор- $n(\square C)$: а) Мор- $4(\square C)$; б) Мор- $6(\square C)$; в) Мор- $8(\square C)$; г) Мор- $10(\square C)$; 25 °C.

спектра биологически активных молекул посредством их мицеллизации в водных растворах. Способность ПАВ солюбилизировать труднорастворимые вещества является одним из ключевых практически важных свойств амфифилов [47–49]. Чтобы оценить способность Мор-п(ДС) выступать в качестве наноконтейнеров, для гидрофобных субстратов был проведен эксперимент по определению солюбилизирующей способности биамфифилов. В качестве модельного субстрата для эксперимента использовали краситель – Оранж ОТ. Спектры поглощения для бинарных систем Мор-п(ДС)/Оранж ОТ при варьировании концентрации БПАВ приведены на рис. П22 (Приложение). Для всех исследуемых биамфифилов была зафиксирована высокая способность к солюбилизации гидрофобного красителя (рис. 5) при концентрациях выше ККМ (табл. 1). Стоит отметить, что значения порога агрегации, полученные спектрофотометрическим методом, немного выше по сравнению с другими методами (табл. 1). На основании концентрационных

КОЛЛОИДНЫЙ ЖУРНАЛ том 86 № 1 2024

зависимостей была вычислена солюбилизационная емкость мицелл (S). Значения S для всех систем приведены на рис. 6. Видно, что солюбилизационная емкость мицелл в ряду Мор-n(ДС) возрастает нелинейно. Значения *S* находятся примерно на одном уровне для Мор-4(ДС), Мор-6(ДС) и для Мор-8(ДС), Мор-10(ДС). Причем переход от низших гомологов к высшим позволяет vвеличить $S \sim в 8$ раз. Подобное явление, вероятно, связано с тем, что в случае более коротких радикалов у катиона морфолиния гидрофобность мицеллярного ядра ниже. Кроме того, часть ионов может выступать в качестве противоионов мицелл [21]. При увеличении длины радикала у катиона морфолиния возникает эффект синергизма, и происходит формирование смешанных межмицеллярных агрегатов с более гидрофобным ядром [50]. В связи с этим солюбилизационная способность агрегатов низших гомологов – меньше, а высших – больше. Стоит отметить, что размер гидрофобного ядра мицелл имеет решающее значение для солюбилизации гидрофобного красителя

Рис. 4. Зависимость электрокинетического потенциала водных растворов Мор-*n*(ДС) от концентрации биамфифилов: черный квадрат — Мор-4(ДС), черный ромб — Мор-6(ДС), черный круг — Мор-8(ДС), черный треугольник — Мор-10(ДС); 25°С.

Рис. 5. Зависимость оптической плотности Оранж ОТ при длине волны 495 нм от концентрации БПАВ для бинарных систем Мор-п(ДС)/Оранж ОТ: черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

[50], поэтому, вероятно, солюбилизационная способность в парах Мор-4(ДС), Мор-6(ДС) и Мор-8(ДС), Мор-10(ДС) находится примерно на одном уровне. На рис. 6 для сравнения приведены значения *S* для других систем: классического катионного ПАВ – цетилтриметиламмоний бромида (ЦТАБ) [51]; анионного ПАВ – ДСН [52]; морфолиниевых ПАВ с гексильными радикалами мономерного (Мор-16) и геминального (Мор-16–6–16) строения [51]. Сравнительный анализ данных показывает, что биамфифилы Мор-8(ДС) и Мор-10(ДС) обладают самой высокой солюбилизационной емкостью среди представленного ряда, которая превышает *S* ДСН в 35 раз, *S* ЦТАБ

Рис. 6. Значения солюбилизационной емкости мицелл для различных амфифильных систем.

в 5 раз, *S* Мор-16 в 1.8 раза, а *S* Мор-16–6–16 в 1.3 раза. Т.е., данные системы представляют собой очень перспективные наноконтейнеры для гидро-фобных соединений.

ЗАКЛЮЧЕНИЕ

Таким образом, получены новые биамфифильные ПАВ на основе катиона алкилметилморфолиния и додецилсульфат-аниона. Комплексом физико-химических методов оценены структура биамфифилов, их агрегационные свойства и солюбилизационная активность. Показано, что увеличение длины углеводородного радикала у амфифильного катиона на два углеродных атома приволит к снижению порогов агрегации систем в 1.5-2 раза. Методом ДРС установлено формирование наноразмерных агрегатов от 10 до 110 нм, в зависимости от длины углеводородного радикала у амфифильного катиона и концентрации БПАВ. Спектрофотометрическим методом показана высокая солюбилизационная способность биамфифилов по отношению к гидрофобному красителю Оранж ОТ, которая была количественно охарактеризована параметром солюбилизационной емкости. Солюбилизационная емкость мицелл высших гомологов БПАВ (Мор-8(ДС) и Мор-10(ДС)) была в 35 раз выше, чем для анионного ПАВ – ДСН и в 5 раз выше, чем для классического катионного ПАВ – ЦТАБ. Низкие пороги агрегации, необычное морфологическое поведение и высокая солюбилизационная способность делают данные соединения перспективными агентами для биотехнологического применения и, в частности, для создания супрамолекулярных наноконтейнеров для гидрофобных соединений.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 23-73-01035, https://rscf.ru/ project/23-73-01035/.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

В данной работе отсутствуют исследования человека или животных.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Котенко А.А., Хилько С.Л. Поверхностные свойства растворов дикатионных имидазолиевых ПАВ с короткими мостиковыми фрагментами // Коллоид. журн. 2021. Т. 83. № 2. С. 179–186. https://doi.org/10.31857/S0023291221020051
- 2. Дементьева О.В. Мезопористые частицы-контейнеры из кремнезема: новые подходы и новые возможности // Коллоид. журн. 2020. Т. 82. № 5. С. 523–547.

https://doi.org/10.31857/S0023291220050031

- Massarweh O., Abushaikha Ah.S. The use of surfactants in enhanced oil recovery: A review of recent advances // Energy Reports. 2020. V. 6. P. 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009
- Johnson P., Trybala A., Starov V., Pinfield V.J. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants // Advances in Colloid and Interface Science. 2021. V. 288. P. 102340.

https://doi.org/10.1016/j.cis.2020.102340

- Kuznetsova D.A., Kuznetsov D.M., Vasileva L.A., Amerhanova S.K., Valeeva D.N., Salakhieva D.V., Nikolaeva V.A., Nizameev I.R., Islamov D.R., Usachev K.S., Voloshina A.D., Zakharova L. Ya. Complexation of oligo- and polynucleotides with methoxyphenyl-functionalized imidazolium surfactants // Pharmaceutics. 2022. V. 14. № 12. P. 2685. https://doi.org/10.3390/pharmaceutics14122685
- 6. Дементьева О.В., Наумова К.А., Шишмакова Е.М., Сенчихин И.Н., Жиглецова С.К., Клыкова М.В., Дунайцев И.А., Козлов Д.А., Рудой В.М. Синтез бифункциональных частиц-контейнеров из кремнезема на мицеллах антисептика с солюбилизированным куркумином и оценка их биологической активности // Коллоид. журн. 2021. Т. 83. № 6. С. 623–633.

https://doi.org/10.31857/S0023291221060021

 Жильцова Е.П., Исламов Д.Р., Захарова Л.Я. Оценка фактора формы агрегатов в самоассоциирующихся системах на основе металлоПАВ //

КОЛЛОИДНЫЙ ЖУРНАЛ том 86 № 1 2024

Коллоид. журн. 2023. Т. 85. № 3. С. 287–295. https://doi.org/10.31857/S0023291223600177

8. Кашапов Р.Р., Миргородская А.Б., Кузнецов Д.М., Разуваева Ю.С., Захарова Л.Я. Наноразмерные супрамолекулярные системы: от коллоидных ПАВ к амфифильным макроциклам и суперамфифилам // Коллоид. журн. 2022. Т. 84. № 5. С. 503–522.

https://doi.org/10.31857/S0023291222600092

 Pavlov R.V., Gaynanova G.A., Kuznetsova D.A., Vasileva L.A., Zueva I.V., Sapunova A.S., Buzyurova D.N., Babaev V.M., Voloshina A.D., Lukashenko S.S., Rizvanov I. Kh., Petrov K.A., Zakharova L. Ya., Sinyashin O.G. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake // International Journal of Pharmaceutics. 2020. V. 587. P. 119640.

https://doi.org/10.1016/j.ijpharm.2020.119640

- Chowdhury S., Rakshit At., Acharjee An., Saha B., Biodegradability and biocompatibility: Advancements in synthetic surfactants // Journal of Molecular Liquids. 2021. V. 324. P. 115105. https://doi.org/10.1016/j.molliq.2020.115105
- Ghosh S., Ray A., Pramanik N., Ambade B. Can a catanionic surfactant mixture act as a drug delivery vehicle? // Comptes Rendus Chimie. 2016. V. 19. № 8. P. 951–954. https://doi.org/10.1016/j.crci.2016.03.020
- Ghosh S., Ray A., Pramanik N. Self-assembly of surfactants: An overview on general aspects of amphiphiles // Biophysical Chemistry. 2020. V. 265. P. 106429.

https://doi.org/10.1016/j.bpc.2020.106429

- 13. El Seoud O.A., Keppeler N., Malek N.I., Galgano P.D. Ionic liquid-based surfactants: Recent advances in their syntheses, solution properties, and applications // Polymers. 2021. V. 13. № 7. P. 1100. https://doi.org/10.3390/polym13071100
- 14. Wasserscheid P., van Hal R., Bösmann A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate – an even 'greener' ionic liquid // Green Chemistry. 2002. V. 4. № 4. P. 400–404. https://doi.org/10.1039/B205425F
- 15. *Rao K.S., Trivedi T.J., Kumar A.* Aqueous-biamphiphilic ionic liquid systems: Self-assembly and synthesis of gold nanocrystals/microplates // Journal of Physical Chemistry B. 2012. V. 116. № 49. P. 14363–14374. https://doi.org/10.1021/jp309717n
- Bharmoria P., Mehta M.J., Pancha I., Kumar A. Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution // Journal of Physical Chemistry B. 2014. V. 118. № 33. P. 9890–9899.

https://doi.org/10.1021/jp506211b

17. Pal A., Punia R., Dubey G.P. Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface

active ionic liquid and an anionic surfactant: Experimental and theoretical study // Journal of Molecular Liquids. 2021. V. 337. P. 116355. https://doi.org/10.1016/j.molliq.2021.116355

- Pal A., Punia R. Self-aggregation behaviour of cationic surfactant tetradecyltrimethylammonium bromide and bi-amphiphilic surface active ionic liquid 3-methyl-1-pentylimidazolium dodecylsulfate in aqueous solution // Journal of Molecular Liquids. 2020. V. 304. P. 112803. https://doi.org/10.1016/j.molliq.2020.112803
- Shi J., Shen X. Construction of supramolecular self-assemblies based on the biamphiphilic ionic liquid–β-cyclodextrin system // Journal of Physical Chemistry B. 2014. V. 118. № 6. P. 1685–1695. https://doi.org/10.1021/jp4113188
- Singh G., Singh G., Kang T.S. Micellization behavior of surface active ionic liquids having aromatic counterions in aqueous media // Journal of Physical Chemistry B. 2016. V. 120. № 6. P. 1092–1105. https://doi.org/10.1021/acs.jpcb.5b09688
- Singh G., Komal, Singh M., Singh O., Kang T.S. Hydrophobically driven morphologically diverse self-assembled architectures of deoxycholate and imidazolium-based biamphiphilic ionic liquids in aqueous medium // Journal of Physical Chemistry B. 2018. V. 122. № 50. P. 12227–12239. https://doi.org/10.1021/acs.jpcb.8b10161
- Kaur M., Kaur H., Singh M., Singh G., Kang T.S. Biamphiphilic ionic liquid based aqueous microemulsions as an efficient catalytic medium for cytochrome *c* // Physical Chemistry Chemical Physics. 2021. V. 23. № 1. P. 320–328.
 - https://doi.org/10.1039/D0CP04513F
- 23. Pavlov R., Valeeva F., Gaynanova G., Kuznetsov D., Zakharova L. Aggregation of morpholinium surfactants with amino alcohols as additives: A close look // Surface Innovations. 2023. V. 11. № 1–3. P. 169–177. https://doi.org/10.1680/jsuin.22.00006
- Hong J.-Y., Kim J.-K., Song Y.-K., Park J.-S., Kim C.-K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption // Journal of Controlled Release. 2006. V. 110. № 2. P. 332–338.
 https://doi.org/10.1016/j.iconrol.2005.10.002

https://doi.org/10.1016/j.jconrel.2005.10.002

- 25. Mirgorodskaya A.B., Lukashenko S.S., Yatskevich E.I., Kulik N.V., Voloshina A.D., Zobov V.V., Zakharova L.Y., Konovalov A.I., Kudryavtsev D.B., Panteleeva A.R. Aggregation behavior, anticorrosion effect, and antimicrobial activity of alkylmethylmorpholinium bromides // Protection of Metals and Physical Chemistry of Surfaces. 2014. V. 50. P. 538–542. https://doi.org/10.1134/S207020511404011X
- 26. *Chiappe C., Pomelli C.S., Rajamani S.* Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids // Journal of Physical

Chemistry B. 2011. V. 115. № 31. P. 9653–9661. https://doi.org/10.1021/jp2045788

- Obliosca J.M., Arco S.D., Huang M.H. Synthesis and optical properties of 1-alkyl-3-methylimidazolium lauryl sulfate ionic liquids // Journal of Fluorescence. 2007. V. 17. P. 613–618. https://doi.org/10.1007/s10895-007-0236-7
- Kuznetsova D.A., Kuznetsov D.M., Vasileva L.A., Toropchina A.V., Belova D.K., Amerhanova S.K., Lyubina A.P., Voloshina A.D., Zakharova L. Ya. Pyrrolidinium surfactants with a biodegradable carbamate fragment: Self-assembling and biomedical application // Journal of Molecular Liquids. 2021. V. 340. P. 117229.

https://doi.org/10.1016/j.molliq.2021.117229

- Kuznetsova D.A., Kuznetsov D.M., Amerhanova S.K., Buzmakova E.V., Lyubina A.P., Syakaev V.V., Nizameev I.R., Kadirov M.K., Voloshina A.D., Zakharova L. Ya. Cationic imidazolium amphiphiles bearing a methoxyphenyl fragment: Synthesis, self-assembly behavior, and antimicrobial activity // Langmuir. 2022. V. 38. № 16. P. 4921–4934. https://doi.org/10.1021/acs.langmuir.2c00299
- 30. Kuznetsov D.M., Kuznetsova D.A., Gabdrakhmanov D.R., Lukashenko S.S., Nikitin Y.N., Zakharova L. Ya. Triallyl ammonium amphiphiles: Self-assembly and complexation with bovine serum albumin // Surface Innovations. 2022. V. 10. № 4–5. P. 298–311.

https://doi.org/10.1680/jsuin.21.00044

- 31. *Кузнецов Д.М., Кузнецова Д.А., Захарова Л.Я.* Липосомы, модифицированные борнеолсодержащими поверхностно-активными веществами, для трансдермальной доставки гидрофильных субстратов // Известия Академии наук. Серия химическая. 2022. Т. 71. № 9. С. 1887–1896.
- Samarkina D.A., Gabdrakhmanov D.R., Lukashenko S.S., Khamatgalimov A.R., Kovalenko V.I., Zakharova L.Y. Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V. 529. P. 990–997.

https://doi.org/10.1016/j.colsurfa.2017.07.018

- 33. Perinelli D.R., Cespi M., Lorusso N., Palmieri G.F., Bonacucina G., Blasi P. Surfactant self-assembling and critical micelle concentration: One approach fits all? // Langmuir. 2020. V. 36. № 21. P. 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420
- 34. Васильева Л.А., Кузнецова Д.А., Валеева Ф.Г., Васильева Э.А., Лукашенко С.С., Гайнанова Г.А., Захарова Л.Я. Мицеллярные наноконтейнеры на основе катионных ПАВ с пирролидиниевой головной группой для повышения биодоступности лекарственных средств // Известия Академии наук. Серия химическая. 2021. № 7. С. 1341–1348.

 Perinelli D.R., Cespi M., Casettari L., Vllasaliu D., Cangiotti M., Ottaviani M.F., Giorgioni G., Bonacucina G., Palmieri G.F. Correlation among chemical structure, surface properties and cytotoxicity of N-acyl alanine and serine surfactants // European Journal of Pharmaceutics and Biopharmaceutics. 2016. V. 109. P. 93–102.

https://doi.org/10.1016/j.ejpb.2016.09.015

- Shaban S.M., Kang J., Kim D.-H. Surfactants: Recent advances and their applications // Composites Communications. 2020. V. 22. P. 100537. https://doi.org/10.1016/j.coco.2020.100537
- 37. *Колесникова Е.Н., Глухарева Н.А.* Мицеллообразование в растворах анионных ПАВ с двумя ионогенными группами // Коллоид. журн. 2008. Т. 70. № 2. С. 207–211.
- Mabrouk M.M., Hamed N.A., Mansour F.R. Spectroscopic methods for determination of critical micelle concentrations of surfactants; a comprehensive review // Applied Spectroscopy Reviews. 2023. V. 58. N

 N. 206-234. https://doi.org/10.1080/05704928.2021.1955702
- Chatterjee A., Moulik S.P., Sanyal S.K., Mishra B.K., Puri P.M. Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements // Journal of Physical Chemistry B. 2001. V. 105. № 51. P. 12823–12831.

https://doi.org/10.1021/jp0123029

- Piñeiro L., Novo M., Al–Soufi W. Fluorescence emission of pyrene in surfactant solutions // Advances in Colloid and Interface Science. 2015. V. 215. P. 1–12. https://doi.org/10.1016/j.cis.2014.10.010
- 41. Aguiar J., Carpena P., Molina–Bolívar J.A., Carnero Ruiz C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method // Journal of Colloid and Interface Science. 2003. V. 258. № 1. P. 116–122.

https://doi.org/10.1016/S0021-9797(02)00082-6

- Pisárčik M., Devínsky F., Pupák M. Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching // Open Chemistry. 2015. V. 13. № 1. P. 922–931. https://doi.org/10.1515/chem-2015-0103
- Israelachvili J.N., Mitchell D.J., Ninham B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers // Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. 1976. V. 72. P. 1525–1568. https://doi.org/10.1039/F29767201525
- Vashishat R., Sanan R., Ray D., Aswal V.K., Mahajan R.K. Biamphiphilic ionic liquids-drug mixtures: Interactional and morphological aspects //

ChemistrySelect. 2018. V. 3. № 25. P. 7089–7099. https://doi.org/10.1002/slct.201801296

- 45. Zakharova L. Ya., Vasilieva E.A., Mirgorodskaya A.B., Zakharov S.V., Pavlov R.V., Kashapova N.E., Gaynanova G.A. Hydrotropes: Solubilization of nonpolar compounds and modification of surfactant solutions // Journal of Molecular Liquids. 2023. V. 370. P. 120923. https://doi.org/10.1016/j.molliq.2022.120923
- Saha U., De R., Das B. Interactions between loaded drugs and surfactant molecules in micellar drug delivery systems: A critical review // Journal of Molecular Liquids. 2023. V. 382. P. 121906. https://doi.org/10.1016/j.molliq.2023.121906
- 47. *Tehrani-Bagha A., Holmberg K.* Solubilization of hydrophobic dyes in surfactant solutions // Materials. 2013. V. 6. № 2. P. 580–608. https://doi.org/10.3390/ma6020580
- 48. Vasilieva E.A., Kuznetsova D.A., Valeeva F.G., Kuznetsov D.M., Zakharova L. Ya. Role of polyanions and surfactant head group in the formation of polymer–colloid nanocontainers // Nanomaterials. 2023. V. 13. № 6. P. 1072. https://doi.org/10.3390/nano13061072
- Gabdrakhmanov D.R., Samarkina D.A., Krylova E.S., Kapitanov I.V., Karpichev Y., Latypov Sh.K., Semenov V.E., Nizameev I.R., Kadirov M.K., Zakharova L. Ya. Supramolecular systems based on novel amphiphiles and a polymer: Aggregation and selective solubilization // Journal of Surfactants and Detergents. 2019. V. 22. № 4. P. 865–874. https://doi.org/10.1002/jsde.12257
- Tehrani–Bagha A., Holmberg K. Solubilization of hydrophobic dyes in surfactant solutions // Materials. 2013. V. 6. № 2. P. 580–608. https://doi.org/10.3390/ma6020580
- Mirgorodskaya A.B., Yackevich E.I., Gabdrakhmanov D.R., Lukashenko S.S., Zuev Yu.F., Zakharova L. Ya. Self-organization and lipoplex formation of cationic surfactants with morpholinium head group // Journal of Molecular Liquids. 2016. V. 220. P. 992–998. https://doi.org/10.1016/j.mollia.2016.05.010

https://doi.org/10.1016/j.molliq.2016.05.010

 Mata J., Varade D., Ghosh G., Bahadur P. Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004.
 V. 245. № 1–3. P. 69–73. https://doi.org/10.1016/j.colsurfa.2004.07.009

ПРИЛОЖЕНИЕ

4-бутил-4-метилморфолиний додецилсульфат. Выход 1.3 г (80.6%). Т. пл. 62–65°С. ИК-спектр (КВг), *v* см⁻¹: 3460, 2959, 2920, 2852, 1648, 1469, 1381, 1223, 1131, 1113, 1075, 1019, 992, 912, 896, 827, 724, 631, 586. Спектр ЯМР ¹Н (400 МГц, CDCl₃, δ м.д., *J* Гц): 0.87 т (OSO₃⁻-(CH₂)₁₁-<u>CH₃</u>, 3H,³*J*_{HH} 6.8); 1.00 т (N⁺-(CH₂)₃-<u>CH₃</u>, 3H, ³J_{HH} 7.3); 1.24–1.34 м (N⁺-(CH₂)₂-<u>CH₂</u>-CH₃, OSO₃⁻-(CH₂)₃-(CH₂)₈-CH₃, 18H); 1.42–1.48 м (OSO₃⁻-(CH₂)₂-<u>CH₂</u>-(CH₂)₈-CH₃, 2H); 1.60–1.67 м (OSO₃⁻-CH₂-<u>CH₂</u>-(CH₂)₉-CH₃, 2H); 1.76 м (N⁺-CH₂-<u>CH₂</u>-CH₂-CH₃, 2H); 3.38 с (N⁺-CH₃, 3H); 3.51 м (N⁺-CH₂-(CH₂)₂-CH₃, 2H); 3.59–3.69 два м (N⁺-<u>CH₂</u>-CH₂-O-, 4H); 3.96–4.09 два м (OSO₃⁻-<u>CH₂</u>-(CH₂)₁₀-CH₃, N⁺-CH₂-CH₂-O-, 6H). Найдено, %: C, 59.47; H, 10.74; N, 3.22; S, 7.48. Вычислено для C₂₁H₄₅NO₅S%: C, 59.54; H, 10.71; N, 3.31; S, 7.57. Масс-спектр ИЭР, *m/z*: [M]⁺ 158.05; [C₁₂H₂₅OSO₃]⁻ 265.14 (рассч. *m/z* для C₂₁H₄₅NO₅S 423.30).

4-гексил-4-метилморфолиний додецилсульфат. Выход 1.1 г (71.4%). Т. пл. 87-92°С. ИК-спектр (KBr), v cm⁻¹: 3456, 2957, 2923, 2854, 1638, 1468, 1379, 1248, 1222, 1132, 1117, 1062, 999, 919, 900, 790, 724, 623, 580. Спектр ЯМР ¹Н (600 МГц, D₂O, δ м.д., *J* Гц): $0.95 \text{ T} (OSO_3^{-}-(CH_2)_{11}-CH_3, 3H, {}^{3}J_{HH} 6.9); 1.00 \text{ T} (N^+ (CH_2)_5 - \underline{CH_3}, 3H, {}^3J_{HH}, \overline{6.9}; 1.37 - 1.46 \text{ M} (N^+ - (CH_2)_5 - 1.46 \text{ M})$ $(\underline{CH}_{2})_{3}$ - CH_{3} , OSO_{3} - $(CH_{2})_{2}$ - $(\underline{CH}_{2})_{9}$ - CH_{3} , 24H); 1.74 M (OSO₃⁻-СH₂-CH₂-(<u>CH₂)</u>⁻-СH₃, 2́Н); 1.89 м (N⁺-CH₂-<u>CH</u>₂-(CH₂)₃-CH₃, 2H); 3.28 c (N⁺-CH₃, 3H); 3.53-3.63 M (N⁺-<u>CH</u>₂-CH₂-O-, N⁺-<u>CH</u>₂-(CH₂)₄-CH₃, 6H); 4.05 м (OSO₃⁻⁻<u>CH</u>₂⁻(CH₂)₁₀-CH₃⁻, 2H); 4.12 м (N⁺-СН₂-<u>СН</u>2-О-, 4Н). Найдено, %: С, 61.08; Н, 10.99; N, 3.10; 5, 7.01. Вычислено для C₂₃H₄₉NO₅S%: С 61.16; H, 10.93; N, 3.11; S, 7.10. Масс-спектр ИЭР, m/z: [M]⁺ 186.15; [C₁₂H₂₅OSO₃]⁻ 265.12 (pacc4. m/zдля С₂₃Н₄₉NO₅S 451.33).

4-метил-4-октилморфолиний додецилсульфат. Выход 1.1 г (74.3%). Т. пл. 100–102°С. ИК-спектр (КВг), v см⁻¹: 3447, 2957, 2924, 2853, 1637, 1468, 1439, 1379, 1251, 1226, 1120, 1096, 1061, 1016, 995, 913, 900, 857, 784, 723, 644, 622, 581, 536. Спектр ЯМР ¹Н (600 МГц, CDCl₃, δ м.д., *J* Гц): 0.87 т (OSO₃⁻-(CH₂)₁₁-<u>CH</u>₃, 3H,³*J*_{HH} 7.1); 0.88 т (N⁺-(CH₂)₇-<u>CH</u>₃, 3H,³*J*_{HH} 7.1); 1.24–1.39 два м (N⁺-(CH₂)₂-(<u>CH₂</u>)₅-CH₃, OSO₃⁻-(CH₂)₂-(<u>CH₂</u>)₉-CH₃, 28H); 1.64 м (OSO₃⁻-CH₂-<u>CH₂-(CH₂)₉-CH₃, 2H); 1.76 м</u> (N⁺-CH₂-<u>CH₂-(CH₂)₅-CH₃, 2H); 3.38 с (N⁺-CH₃, 3H); 3.48 м (N⁺-<u>CH₂-(CH₂)₆-CH₃, 2H); 3.54–3.57, 3.66–3.68 два м (N⁺-<u>CH₂-CH₂-O</u>, 4H); 3.95–3.99 м (N⁺-CH₂-<u>CH₂-O</u>, 4H); 4.04–4.08 м (OSO₃⁻-<u>CH₂-(CH₂)₁₀-CH₃, 2H). Найдено, %: C, 62.66; H, 11.15; N, 2.84; S, 6.60. Вычислено для C₂₅H₅₃NO₅S%: C, 62.59; H, 11.13; N, 2.92; S, 6.68. Масс-спектр ИЭР, *m/z*: [M]⁺ 214.03; [C₁₂H₂₅OSO₃]⁻ 265.14 (рассч. *m/z* для C₂₅H₅₃NO₅S 479.36).</u></u></u>

4-децил-4-метилморфолиний додецилсульфат. Выход 1.1 г (78%). Т. пл. 98-100°С. ИК-спектр (КВг), *v* см⁻¹: 3489, 2957, 2922, 2853, 1640, 1469, 1381, 1248, 1227, 1120, 1061, 1015, 992, 904, 855, 786, 723, 623, 581. Спектр ЯМР ¹Н (400 МГц, CDCl₃, δ м.д., *J* Гц): 0.86-0.89 т (OSO₃⁻-(CH₂)₁₁-<u>CH₃</u>, N⁺-(CH₂)₉-<u>CH₃</u>, 6H); 1.25–1.37 два м (N⁺-(CH₂)₂- $(\underline{CH}_{2})_{7}^{-}CH_{3}^{-}, OSO_{3}^{-}-(CH_{2})_{2}^{-}(CH_{2})_{9}^{-}CH_{3}^{-}, 32H);$ 1.65 м (OSO₃⁻-CH₂-CH₂-(CH₂)₉-CH₃, 2H); 1.77 м $(N^+-CH_2-CH_2-(CH_2)_7-CH_3, 2H); 3.38 c (N^+-CH_3, 2H); 3.38 c ($ 3H); 3.48 м (Ñ⁺-<u>СН</u>₂-(CH₂)₈-CH₃, 2H); 3.54–3.58, 3.65–3.69 два м (N⁺-<u>CH</u>₂-CH₂-CH₂-O-, 4H); 3.95–4.01 м $(N^+-CH_2-\underline{CH}_2-O^-, 4H);$ 4.04–4.10 м (OSO₃⁻-<u>CH</u>₂-(CH₂)₁₀-CH₃, 2H). Найдено, %: C, 63.79; H, 11.28; N, 2.82; S, 6.24. Вычислено для C₂₇H₅₇NO₅S%: C, 63.86; H, 11.31; N, 2.76; S, 6.31. Масс-спектр ИЭР, m/z: [M]⁺ 242.07; [C₁₂H₂₅OSO₃]⁻ 265.15 (paccy. m/zдля C₂₇H₅₇NO₅S 507.40).

Рис. П1. ЯМР ¹Н спектр соединения Мор-4(ДС).

Рис. П2. Масс-спектр ИЭР соединения Мор-4(ДС) (регистрация положительных ионов).

Рис. ПЗ. Масс-спектр ИЭР соединения Мор-4(ДС) (регистрация отрицательных ионов).

Рис. П4. ИК-спектр соединения Мор-4(ДС).

Рис. П5. ЯМР ¹H спектр соединения Мор-6(ДC).

Рис. Пб. Масс-спектр ИЭР соединения Мор-6(ДС) (регистрация положительных ионов).

КУЗНЕЦОВ и др.

Рис. П7. Масс-спектр ИЭР соединения Мор-6(ДС) (регистрация отрицательных ионов).

Рис. П8. ИК-спектр соединения Мор-6(ДС).

Рис. П9. ЯМР ¹Н спектр соединения Мор-8(ДС).

Рис. П10. Масс-спектр ИЭР соединения Мор-8(ДС) (регистрация положительных ионов).

КУЗНЕЦОВ и др.

Рис. П11. Масс-спектр ИЭР соединения Мор-8(ДС) (регистрация отрицательных ионов).

Рис. П12. ИК-спектр соединения Мор-8(ДС).

Рис. П13. ЯМР ¹Н спектр соединения Мор-10(ДС).

Рис. П14. Масс-спектр ИЭР соединения Мор-10(ДС) (регистрация положительных ионов).

КУЗНЕЦОВ и др.

Рис. П15. Масс-спектр ИЭР соединения Мор-10(ДС) (регистрация отрицательных ионов).

Рис. П16. ИК-спектр соединения Мор-10(ДС).

Рис. П17. Зависимость удельной электропроводности от концентрации биамфифилов: а) для систем Мор-4(ДС) и Мор-6(ДС); б) для систем Мор-8(ДС) и Мор-10(ДС); черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Рис. П18. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 3 мМ (а), 5 мМ (б) и 7 мМ (в) Мор-4(ДС); стрелкой показано направление увеличения концентрации тушителя.

Рис. П19. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 3 мМ (а), 5 мМ (б) и 7 мМ (в) Мор-6(ДС); стрелкой показано направление увеличения концентрации тушителя.

Рис. П20. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 1 мМ (а), 3 мМ (б) и 5 мМ (в) Мор-8(ДС); стрелкой показано направление увеличения концентрации тушителя.

Рис. П21. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 0.5 мМ (а), 0.8 мМ (б) и 1 мМ (в) Мор-10(ДС); стрелкой показано направление увеличения концентрации тушителя.

Рис. П22. Спектры поглощения Оранж ОТ для бинарных систем Мор-п(ДС)/Оранж ОТ при различных концентрациях ПАВ: а) Мор-4(ДС); б) Мор-6(ДС); в) Мор-8(ДС); г) Мор-10(ДС); стрелкой показано увеличение концентрации ПАВ; 25°С.