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Аннотация. Получены и охарактеризованы наночастицы полиэлектролитного комплекса хи-
тозана с κ-каррагинаном, содержащие квантовые точки «ядро–оболочка» CdS/ZnS, как моде-
ли биосовместимых люминесцентных систем доставки антибиотика ванкомицина с эффектив-
ностью инкапсулирования 95–97%. Квантовые точки получены коллоидным методом синтеза  
и гидрофилизированы меркаптопропионовой кислотой. Изучено влияние ванкомицина, ин-
капсулированного в частицы полиэлектролитного комплекса, на люминесцентные свойства 
квантовых точек CdS/ZnS. Продемонстрированы возможности синтезированных квантовых то-
чек в качестве модельных наносенсоров для определения включения и высвобождения ванко-
мицина из разработанных носителей на основе тушения люминесценции квантовых точек. Ис-
следовано связывание ванкомицина с альбумином как моделью белка крови, определен состав 
комплекса ([ванкомицин] : [альбумин] = 1.0 : 2.0) и константа его устойчивости (βк= 6.0∙104 М–1). 
Анализ кинетических данных высвобождения ванкомицина из полимерных носителей в условиях 
in vitro в растворы альбумина и трис-буфера в рамках математической модели Корсмейера–Пеп-
паса, показал, что высвобождение антибиотика контролируется как диффузией, так и релакса-
цией полимерной матрицы.
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Abstract. Nanoparticles of a polyelectrolyte complex of chitosan and κ-carrageenan containing core–
shell quantum dots of CdS/ZnS were obtained and characterized as potential biocompatible luminescent 
delivery systems for the antibiotic vancomycin with an encapsulation efficiency of 95–97%. Quantum dots 
were obtained by a colloidal synthesis method and hydrophilized with mercaptopropionic acid. The effect 
of vancomycin encapsulated in particles of the polyelectrolyte complex on the luminescent properties 
of CdS/ZnS quantum dots was studied. The capabilities of the synthesized quantum dots as analytical 
nanosensors for determine the incorporation and release of vancomycin from the developed carriers 
based on their luminescence quenching were demonstrated. The binding of vancomycin to albumin as a 
model of blood protein was studied, the composition of the complex ([vancomycin]: [albumin] = 1.0 : 2.0) 
and its stability constant (βk = 6.0∙104 M–1) were determined. Analysis of kinetic data on the release of 
vancomycin from polymer carriers under in vitro conditions into albumin and tris-buffer solutions within 
the framework of the Korsmeyer–Peppas mathematical model showed that the release of the antibiotic 
is controlled by both diffusion and relaxation of the polymer matrix.

Keywords: chitosan, carrageenan, polyelectrolyte complex, vancomycin, quantum dots, luminescence quenching, drug 
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ВВЕДЕНИЕ

Концепция персонализированной медицины яв-
ляется многообещающим способом удовлетворения 
индивидуальных медицинских потребностей человека 
в современном обществе. Учитывая межиндивидуаль-
ную вариабельность терапевтического ответа на одно 
и то же лекарственное средство, индивидуализирован-
ный подход в лечении пациента может привести к улуч-
шенным результатам терапии, одновременно умень-
шая дискомфорт пациента и нежелательные побочные 
эффекты [1]. Тераностика – это сравнительно новое 
направление в наномедицине, которое заключается 
в интеграции терапевтических и диагностических (ви-
зуализирующих) средств в одном и том же носителе [2]. 
Для тераностических целей используются разнообраз-
ные наноматериалы, такие как полимеры, дендримеры, 
жидкие кристаллы, металлические и неметаллические 
наночастицы и др. [3, 4]. Помимо возможности контро-
ля скорости высвобождения лекарственного вещества, 
малый размер наночастиц обеспечивает высокую про-
пускную способность биологически активных и опти-
ческих агентов. Нанометровый размер также позволяет 
частицам легко проникать из кровеносных сосудов  
в злокачественные или поврежденные ткани, благодаря 
более проницаемой сосудистой сети и нарушенному 
лимфатическому клиренсу таких тканей, по сравнению 
с нормальной тканью [5].

Особая роль в тераностике отводится функциона-
лизированному хитозану (ХТЗ), который может при-
меняться как для биовизуализации в виде конъюгата  
с флуоресцентными визуализирующими агентами, так 
и в качестве наноразмерного носителя для доставки 
лекарственных веществ [6–8]. Преимущества данного 
аминополисахарида заключаются в его превосходной 
биоразлагаемости и биосовместимости, а также низкой 

токсичности в сочетании с многочисленными биоло-
гическими активностями, такими как антимикробная 
активность, гемостатическая активность, ранозажив-
ляющая способность, низкая иммуногенность [9].

Известно, что ХТЗ является единственным положи-
тельно заряженным полусинтетическим полимером, 
получаемым частичным дезацетилированием хитина, 
за счет протонирования его аминогрупп в слабокислых 
средах. Это обуславливает высокую комплексообразу-
ющую способность ХТЗ по отношению к веществам 
анионной природы, например, металлам, красителям, 
анионным полиэлектролитам [10, 11]. Комплексообра-
зование ХТЗ с противоположно заряженными полиэ-
лектролитами является перспективной стратегией его 
функционализации. Образующиеся при этом поли-
мерные структуры – полиэлектролитные комплексы 
(ПЭК) обладают набором уникальных свойств, поэтому 
они более широко, по сравнению с индивидуальными 
полимерами, используются при разработке «умных» 
наноматериалов для биомедицины [12, 13]. Среди ани-
онных полисахаридов своими ценными для данного 
направления использования свойствами выделяется 
каррагинан (КРГ), содержащий в своем составе суль-
фатные группы. Каррагинаны проявляют высокую 
антиоксидантную активность и могут формировать 
термостабильные прочные гели, устойчивые при ней-
тральных значениях pH, что позволяет их применять 
при создании систем адресной и пролонгированной 
доставки биологически активных веществ [14–16].

Основной целью медицинской визуализации яв-
ляется неинвазивный анализ биопроцессов во вре-
мя медицинских исследований, таких как компью-
терная томография, магнитно-резонансная томогра-
фия, рентгенография и ультразвуковое исследование. 
В качестве визуализирующих агентов или наносен-
соров широко используются полупроводниковые 
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квантовые точки (КТ), углеродные квантовые точки, 
органические красители [17–20]. КТ особенно при-
влекательны для биовизуализации благодаря тому, 
что их оптические свойства можно варьировать пу-
тем изменения размера частиц и их конфигурации.  
К безусловным достоинствам КТ можно отнести также 
высокий квантовый выход, низкое фотообесцвечивание 
и устойчивость к химической деградации. Однако, при-
сутствие тяжелых металлов (например, в КТ на основе 
кадмия) и связанная с этим токсичность ограничивают 
применение полупроводниковых КТ in vivo [21].

Сочетание эффективной люминесценции КТ и био-
активных свойств ПЭК хитозана делает системы, по-
лученные на их основе, перспективными материалами 
для создания мультифункциональных диагностических 
и терапевтических носителей. Биосовместимая по-
лимерная основа выполняет при этом двойную роль: 
позволяет снизить долгосрочные профили токсичности 
полупроводниковых нанокристаллов и обеспечивает 
пролонгированное высвобождение иммобилизован-
ного лекарственного вещества.

Особенно такой комплексный тераностический 
подход перспективен для разработки систем доставки 
токсичных препаратов для химиотерапии, антибиотиков 
и других сильнодействующих лекарственных средств. 
Ванкомицин (ВНЦ) представляет собой трицикличе-
ский гликопептидный антибиотик с длительным бак-
терицидным эффектом, который широко применяется 
в моно- и комплексной антибиотикотерапии тяжелых 
инфекционных заболеваний. ВНЦ активно включается 
с состав временных эндопротезов, которые использу-
ются в случае возникновения воспалительных процес-
сов при протезировании коленных и тазобедренных 
суставов [22, 23]. Особенностью данного антибиотика 
является узкое терапевтическое окно (эффективная 
концентрация близка к токсической) [24]. Поэтому по-
лучение новых многофункциональных систем доставки 
ВНЦ, позволяющих пролонгировано высвобождать его 
в определенных тканях и органах организма человека 
для поддержания постоянной концентрации в тера-
певтическом диапазоне и одновременно обеспечивать 
визуализацию данного процессе, является актуальной 
задачей персонализированной медицины.

В предыдущих исследованиях нами были проде-
монстрированы возможности КТ «ядро–оболочка» 
CdS/ZnS как аналитических наносенсоров для опера-
тивного обнаружения ВНЦ в водных средах [25]. Было 
показано, что тушение люминесценции наночастиц 
CdS/ZnS ванкомицином имеет линейную зависимость 
в диапазоне концентраций 35–690 мкМ с коэффици-
ентом детерминации R2 = 0.988, а предел обнаружения 
антибиотика составляет 56.2 мкМ. Использование КТ 
в качестве зонда обеспечило необходимую точность, 
чувствительность и экспрессность определения кон-
центрации ВНЦ. Такие возможности не предоставляют 
в полной мере другие существующие на сегодняшний 
день методы обнаружения этого антибиотика, которые 
позволяют определять его сверхмалые концентрации 

в узком диапазоне и предназначены в основном для 
исследований в плазме крови [26–28].

Следует также отметить, что исследований, посвя-
щенных разработке носителей ВНЦ, применяемых для 
парентерального введения, с возможностью визуали-
зировать процесс его высвобождения, нами не обнару-
жены. Поэтому целью данной работы стало получение 
многофункциональных высокоэффективных систем до-
ставки ВНЦ на основе наночастиц полиэлектролитных 
комплексов хитозана, обеспечивающих возможность 
пролонгированного высвобождения и одновременной 
визуализации его накопления и распределения в режиме 
реального времени.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения ПЭК применялись образцы катион-
ного полиэлектролита ХТЗ (MМ 38700, степень деаце-
тилирования 80% (по данным кондуктометрического 
титрования) (ЗАО «Биопрогресс»)) и анионного по-
лиэлектролита κ-КРГ (MМ 400000, степень сульфа-
тирования 22% («Molecularmeal»)). Молекулярные 
массы образцов полимеров рассчитывали по уравнению 
Марка–Хаувинка–Куна с использованием в качестве 
растворителя водного раствор NaCl (0.05 М) для пода-
вления эффекта полиэлектролитного набухания [29]. 
Лекарственный препарат ВНЦ использовали в виде 
порошка для приготовления раствора для инъекций 
(торговое название – «Ванкомицин эльфа», «Эльфа Ла-
бораториз») без дополнительной очистки. Структурные 
формулы объектов исследования приведены на Рис. 1.

Для получения частиц ПЭК ХТЗ–КРГ смешивали 
водный раствор КРГ с концентрацией 10–2 осново- 
моль/л с раствором ХТЗ концентрацией 10–2 осново- 
моль/л в 6.0 мМ растворе уксусной кислоты в различ-
ных объемных соотношениях VКРГ/VХТЗ. pH раствора 
ХТЗ составлял 5.6. Смеси перемешивали на магнитной 
мешалке в течение 30 мин со скоростью 800 об/мин. 
Отделение частиц ПЭК от непрореагировавших по-
лиэлектролитов проводили центрифугированием  
(7000 об/мин) в течение 10 мин. Состав смесей полиэ-
лектролитов определяли как отношение концентраций 
κ-каррагинана и хитозана Z = [КРГ]: [ХТЗ]. Концентра-
цию растворов полиэлектролитов, как отмечено выше, 
выражали в осново-моль/л как отношение количества 
молей мономерных звеньев (с учетом степеней деаце-
тилирования и сульфатирования ХТЗ и КРГ соответ-
ственно) к объему раствора.

Для синтеза КТ CdS/ZnS использовали следующие 
реагенты: ацетат кадмия (II) дигидрат (99%, «ТатХим-
Продукт»), ацетат марганца (II) тетрагидрат (ч. д. а., 
«ТатХимПродукт»), ацетат цинка (II) дигидрат (ч. д. а., 
«ТатХимПродукт»), сера элементарная (осч., «ТатХим-
Продукт»), селен металлический (99%, «Panreac»), оле-
ил‑1-амин (90%, «Acros»), октадецен (90%, «Acros»), 
олеиновая кислота (75%, «Купавнареактив»), гидроксид 
натрия (99%, «ТатХимПродукт»), хлороформ (ч. д. а., 
«ТатХимПродукт»), меркаптопропионовая кислота 
(МПК) (99%, «Panreac»), этанол (ректификат).
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Квантовые точки CdS/ZnS синтезировали по ранее 
разработанной нами методике [30]. В качестве непо-
лярного растворителя и реакционной среды исполь-
зовались октадецен‑1 и олеиновая кислота. Синтез 
включал в себя три основные стадии: приготовление 
органорастворимых прекурсоров, коллоидный синтез 
наночастиц, выделение и очистка. На первой стадии 
ацетат кадмия и ацетат цинка растворяли в смеси оле-
иновой кислоты и октадецена‑1 в отдельных колбах 
с последующим образованием олеатов. Реакцию про-
водили при 130°C под вакуумом для удаления уксусной 
кислоты и растворенных газов, образующихся в ходе 
реакции. Элементарную серу растворяли в октадецене 
при 130°C под вакуумом. На второй стадии полученные 
растворы заливали в колбы объемом 100 мл, нагрева-
ли до 300–310°C и смешивали, после чего начиналась 
нуклеация наночастиц. Реакцию проводили в атмос-
фере аргона. По окончании реакции смесь охлаждали 
до комнатной температуры, что приводило к осаждению 
наночастиц из реакционной смеси. Полученные КТ 
дважды очищали центрифугированием при добавлении 
этанола и вновь диспергировали в толуоле. Образцы 
хранили в виде коллоидных растворов.

Для проведения последующих экспериментов КТ 
гидрофилизировали. Гидрофилизацию проводили 

по разработанной нами методике [31]. Для этого кван-
товые точки CdS/ZnS диспергировали в хлороформе 
и добавляли к полученной дисперсии 1 мл олеиновой 
кислоты. Отдельно готовили водный раствор МПК, 
рН которого доводили до 10 при помощи 2 М раствора 
NaOH. Далее раствор МПК приливали к дисперсии КТ. 
Полученную двухфазную систему при интенсивном 
перемешивании нагревали до 90°C для испарения хло-
роформа. После испарения хлороформа КТ переводили 
в водную фазу. Остатки олеиновой кислоты, олеиламина 
и прочих веществ удаляли путем центрифугирования 
при добавлении этанола, после чего гидрофилизиро-
ванные КТ диспергировали в воде.

Частицы комплексов ХТЗ–КРГ с КТ и ВНЦ по-
лучали следующим образом. К раствору КРГ пред-
варительно добавляли растворы ВНЦ и КТ CdS/ZnS  
(1.5 мг/мл), затем вводили в раствор ХТЗ. Приготовлен-
ную смесь центрифугировали в течение 10 мин со ско-
ростью 7000 об/мин для отделения непрореагировавших 
компонентов.

Средний размер частиц в исследуемых системах 
и ζ-потенциал их поверхности определяли методом ди-
намического рассеяния света на анализаторе размера 
частиц серии Zetasizer Nano-ZS («Malvern Instruments 
Ltd.»), оснащенном гелий-неоновым лазером (633 нм,  

(a) (б)

(в)

OH

OH

OH OH

OH

OH

OH

OH

OH

OH

O

O

O

O
O

O

O
O O

O

O
O

O
O

O O

O

O

O

O

O

O

O

O

O

O
O

O

HO

HO

HO

HO

HO
HO

HO

H

NH

NH

NHNH HN

CH
m 1-m

H

S
Na

n

HO

Cl Cl

H
N

H
N N

H
N
H N

H

H  N2

2

2

3

H
O

Рис. 1. Структурные формулы повторяющихся звеньев хитозана (а), κ-каррагинана (б) и молекулы ванкомицина (в).
Fig. 1. Structural formulas of monomer units of chitosan (a), κ-carrageenan (b) and  vancomycin molecule (c).
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4 мВт). Угол светорассеяния составлял 173°. Графи-
ческую интерпретацию результатов измерения полу-
чали с помощью программного обеспечения «DTS 
Application Software» компании Malvern Instruments 
для работы под управлением операционной системы 
Windows®. При анализе автокорреляционной функ-
ции использовали приближение для твердых сфери-
ческих частиц. Определение ζ-потенциала в водных 
системах проводили методом электрофоретического 
рассеяния света с применением технологии M3-PALS 
(использование быстро и  медленно переменного 
электрического поля наряду с фазовым и частотным 
анализом рассеянного света). Перед выполнением 
измерений образцы фильтровали через фильтры Mil-
lipore с мембраной Durapore PVDF и диаметром пор 
0.45 мкм. Для каждого образца проводили 3 серии из-
мерений по 10 измерений в каждой. Ошибки измере-
ний размера и ζ-потенциала частиц составили ±2% и 
±0.12 мВ соответственно.

Морфологический и элементный анализы получен-
ных в работе коллоидных частиц проводили с помощью 
анализа изображений сканирующей электронной ми-
кроскопии (СЭМ) и энергодисперсионной рентгенов-
ской спектроскопии (EDX) с использованием сканиру-
ющего электронного микроскопа Evo ls 10 («Carl Zeiss»). 
Образцы исследовались после напыления проводящего 
золотого слоя на установке Vac Coat DSCT.

Рентгенодифракционные исследования образцов КТ 
проводили на порошковом рентгеновском дифракто-
метре XRD‑7000 («Shimadzu») с использованием моно-
хроматизированного CuKα излучения (l = 1.54063 Å).

Спектрофотометрические измерения в УФ области 
проводились на сканирующем двухлучевом спектро-
фотометре «Lambda 35» («Perkin Elmer Instrumental») 
в кварцевых кюветах объемом 3 см3. Кювету сравне-
ния заполняли дистиллированной водой. Спектры 
растворов ВНЦ снимали с использованием в каче-
стве растворителя раствора альбумина (АБ) (из ку-
риных яиц, C2936H4624N786O839S41, «Купавнареактив»,  
ММ 45000) с концентрацией 70 мкг/мл. В предвари-
тельных исследованиях было установлено, что зави-
симость оптической плотности от концентрации ВНЦ 
в растворе подчиняется закону Бугера–Ламберта–Бера 
при длине волны 280 нм в диапазоне концентраций 25– 
1000 мкг/мл [25].

Комплексообразование ВНЦ с АБ изучали методом 
изомолярных серий Остромысленского–Жоба [32] 
и методом молярных отношений [33]. Для исследова-
ний методом изомолярных серий готовили растворы 
ВНЦ и АБ с исходными концентрациями 10–4 М. Рас-
творы обоих компонентов смешивали в соотношениях  
от 1 : 9 до 9 : 1, сохраняя при этом общий объем раствора 
10 мл и общую концентрацию 10–4 М.

Для метода мольных отношений также готовили 
растворы ВНЦ и АБ с исходными концентрациями 
10–4 М. В 10 мерных колб наливали по 2 мл раствора АБ 
и от 0.5 до 8 мл ВНЦ, затем доводили объем смеси водой 
до 10 мл. В соответствии с методом мольных отноше-
ний при постоянной концентрации АБ и переменной 

концентрации ВНЦ спектральные изменения для рас-
твора лекарственного вещества описываются уравне-
нием [33]:

[ ]
(( ) [ ]

,AБ
ВНЦкA A−

=
−

+
−0 0 0

1 1
ε ε ε ε β  	  (1)

где А и А0 – оптические плотности растворов ВНЦ в при-
сутствии и отсутствии АБ; [АБ] – начальная концен-
трация раствора альбумина, М; [ВНЦ] – концентрация 
ванкомицина, М; ε и ε0 – молярные коэффициенты 
экстинкции комплекса ВНЦ–АБ и индивидуального 
ВНЦ соответственно; βк – константа устойчивости 
комплекса (М–1).

Константу устойчивости комплекса ВНЦ–АБ βк 
определяли способом Клотца [33] из графика зависимо-
сти [АБ]/(А–А0) от 1/[ВНЦ] по тангенсу угла наклона.

Спектры люминесценции растворов получали 
на сканирующем спектрофлуориметре CaryEclipse 
(«Varian»). Длина волны возбуждения подбиралась 
в соответствии с люминесцентными характеристи-
ками исследуемых веществ. Для растворов ВНЦ она 
составляла 280 нм [34], для растворов КТ, КТ с добав-
ками ВНЦ и ПЭК с добавками КТ и ВНЦ – 370 нм [35]. 
Регистрацию спектров люминесценции производили 
в интервале длин волн 400–900 нм.

Константы связывания КТ CdS/ZnS с ВНЦ, иммо-
билизованного в ПЭК, определяли на основе данных 
тушения люминесценции КТ. Динамическое тушение 
люминесценции описывали уравнением Штерна–
Фольмера [36]:

	 	
F
F

K0 1= + [ ],ВНЦ  	  (2)

где F0 и F – интенсивности люминесценции в отсутствие 
и присутствии тушителя; [ВНЦ] – концентрация ванко-
мицина (М); К – эффективная константа связывания 
КТ с ВНЦ (М–1).

Эффективность иммобилизации ВНЦ на частицах 
ПЭК, содержащих КТ CdS/ZnS, оценивали по разно-
сти исходного количества антибиотика, взятого для 
включения в ПЭК, и равновесного количества лекар-
ственного вещества.

Кинетику высвобождение ВНЦ из частиц комплекса 
ХТЗ–КРГ изучали в условиях in vitro при температуре 
37°. В качестве приемных сред использовали трис-бу-
фер (pH 7.4) и водный раствор АБ (70 мкг/мл). Образ-
цы комплексов ХТЗ–КРГ с КТ и ВНЦ, полученные 
по описанной выше методике, массой 10 мг помеща-
ли в ячейку с приемной средой объемом 10 мл. Через 
определенные промежутки времени отделяли частицы 
ПЭК от приемной среды центрифугированием в течение  
3 мин со скоростью 7000 об/мин. Затем отбирали пробу 
объемом 1 см3 и переносили в кювету для записи спек-
тров люминесценции при длине волны возбуждения  
370 нм. После проведения измерения пробу сразу воз-
вращали обратно в исследуемую систему. Количество 
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ВНЦ, высвободившегося из частиц комплексов ХТЗ–
КРГ в приемные среды, рассчитывали на основании 
данных тушения люминесценции КТ CdS/ZnS ванко-
мицином. В качестве калибровочной зависимости для 
расчета количества высвободившегося ВНЦ исполь-
зовали график, построенный в координатах Штерна–
Фольмера (F0/F – 1) = f(cВНЦ).

Выход ВНЦ из частиц ПЭК определяли по отно-
шению количества лекарственного вещества mt, выс-
вободившегося из частиц ПЭК к моменту времени t, 
и равновесного количества ВНЦ m∞:

		  Q
m
m

= ×
∞

t 100.  	  (3)

Коэффициенты диффузии ВНЦ в частицах ПЭК 
находили в рамках II закона Фика при t = t1/2, т. е. в мо-
мент, когда mt  достигало половины равновесной вели-
чины m∞

 
[37]:
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Анализ механизма высвобождения ВНЦ из поли-
мерного носителя проводили с применением матема-
тической модели Корсмейера–Пеппаса [38] с исполь-
зованием следующего уравнения:
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где k – константа, связанная с параметрами взаимодей-
ствия полимер–диффундирующее вещество; n – пока-
затель, характеризующий механизм переноса вещества.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Самоорганизацию полиэлектролитов в водных 
растворах можно описать как спонтанную межмо-
лекулярную ассоциацию через нековалентные связи 
(электростатические, водородные, донорно-акцеп-
торные, гидрофобные взаимодействия), в результате 
чего в системе происходит образование устойчивых 

супрамолекулярных структур размером от 10 нм  
до 10 мкм [10]. Механизм образования ПЭК восприим-
чив к изменениям внешних факторов (температуры, pH 
среды, химической природы и полярности растворителя 
и др.), что определяет привлекательность их примене-
ния в качестве стимул-чувствительных носителей для 
специфической доставки и контролируемого высво-
бождения лекарственных веществ.

При взаимодействии слабого основания ХТЗ с КРГ, 
представляющим собой сильную кислоту, в их сме-
шанных слабокислых растворах происходит образова-
ние солевых связей между протонированными амино-
группами ХТЗ и сульфатными группами КРГ [39–41]. 
В проведенных ранее исследованиях было изучено 
комплексобразование данных полиэлектролитов и пока-
зано, что образование ПЭК ХТЗ–КРГ сопровождается 
снижением удельной электропроводимости смешанных 
растворов, электрокинетического потенциала образу-
ющихся частиц и изменением их размера [11].

Как видно из Таблицы 1, частицы ХТЗ имеют размер 
130 нм и характеризуются положительным ζ-потенци-
алом. Структуры такого размера представляют собой, 
по-видимому, ассоциаты макроцепей ХТЗ. Образование 
ПЭК приводит к незначительному увеличению размера 
частиц и закономерному уменьшению их ζ-потенциала. 
Следует отметить, что при эквимольном соотношении 
концентрации полиэлектролитов в системе ([КРГ]: 
[ХТЗ] = 1 : 1) отмечается сохранение положительного 
значения электрокинетического потенциала частиц.

Исследования морфологии поверхности и размера 
частиц комплексов ХТЗ–КРГ с помощью сканирующей 
электронной микроскопии показало наличие различ-
ных структур, состоящих из частиц с размером от 30 до 
45 нм (Рис. 2а). На отдельных изображениях видны 
скопления частиц, размеры которых варьируются от 600 
до 900 нм, что говорит о сильной агрегации частиц ПЭК 
(Рис. 2б). На EDX‑спектрах комплексов наблюдаются 
сигналы в области серы и азота (Рис. 2в), что согласуется 
с химическим составом полученных ПЭК ХТЗ–КРГ.

Квантовые точки «ядро–оболочка» CdS/ZnS по-
лучали коллоидным методом синтеза [30]. Средний 

Таблица 1. Размер и ζ-потенциал частиц ПЭК КРГ–ХТЗ, содержащих ВНЦ и КТ CdS/ZnS.

Table 1. Sizes and ζ-potentials of CRG–ChTS PEC particles containing VNC and CdS/ZnS QDs.

Состав системы Содержание ВНЦ, мкг/мл Средний размер частиц 
d, нм

ζ-потенциал, мВ

КТ CdS/ZnS – 10 ± 1 –22.0
ХТЗ – 130 ± 3 30.1
ПЭК* – 135 ± 3 8.2
ПЭК+ CdS/ZnS (1.5 мг/мл)
+ ВНЦ

25 141 ± 3 –36.1
100 147 ± 3 –38.8
300 181 ± 4 –40.2
500 190 ± 4 –40.9

* Состав ПЭК – [КРГ] : [ХТЗ] = 1 : 1
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гидродинамический размер синтезированных КТ 
с учетом размеров молекул стабилизатора – олеино-
вой кислоты и сольватной оболочки, определенный 
методом динамического рассеяния света, составил 
10–11 нм, ζ-потенциал –22 мВ (Таблица 1). Анализ 
СЭМ‑изображений КТ CdS/ZnS выявил присутствие 
наночастиц с размерами от 15 до 22 нм (Рис. 3а), которые 
включают в свой состав кадмий, цинк и серу (Рис. 3б). 
Данные рентгенодифракционного анализа (Рис. 3в) 
подтверждают образование частиц, имеющих «ядра» 
CdS. КТ имеют кубическую структуру кристаллической 
решетки типа цинковой обманки (сфалерита). Размер 
кристаллической ячейки, определенный по уравнению 
Дебая–Шеррера [42], составил 2 нм, что значительно 
меньше значений размеров КТ, полученных методом 
динамического рассеяния света и СЭМ. Обнаруженное 
отличие в размерах наночастиц может быть обусловлено 
отсутствием четкой границы между ядром и оболочкой 
КТ, а также формирование аморфного сплава CdZnS.

Синтезированные наночастицы сульфида кадмия 
с оболочкой сульфида цинка имеют узкую полосу ин-
тенсивной люминесценции в синей области спектра 
электромагнитного излучения при 464 нм (Рис. 4а). 
Ширина полос на полувысоте составила порядка 25 нм, 

что характерно для наночастиц CdS. Относительный 
квантовый выход образцов КТ CdS/ZnS составил 0.34.

Люминесцентные частицы комплексов ХТЗ–КРГ 
с иммобилизованным антибиотиком ВНЦ получали 
путем смешения раствора ХТЗ с раствором КРГ, в ко-
торый предварительно были добавлены растворы ВНЦ 
и суспензии КТ CdS/ZnS. На СЭМ‑изображении по-
верхности полученных структур обнаруживаются нано-
частицы с размерами от 17 до 56 нм (Рис. 5а). В состав 
частиц входят кадмий, цинк и сера, что подтверждает 
включение КТ CdS/ZnS в состав комплексов ХТЗ–КРГ 
(Рис. 5б). Эффективность иммобилизации ВНЦ на на-
ночастицах ПЭК составила 95–97%.

ВНЦ имеет сложную структуру, характерную для 
гликопептидных антибиотиков, содержащих углеводные 
фрагменты, ковалентно связанные с боковыми цепями 
аминокислотных остатков. В проведенных нами ранее 
исследованиях методами динамического рассеяния 
света, ИК‑спектроскопии и квантово-химическими 
расчетами было показано, что взаимодействие ВНЦ 
с наночастицами CdS/ZnS осуществляется за счет об-
разования водородных связей между карбоксильными 
группами меркаптопропионовой кислоты, координиро-
ванными на поверхности КТ, и аминогруппами ВНЦ [25].

Рис. 2. СЭМ‑изображения (а), (б) и EDX‑спектр (в) частиц ПЭК ХТЗ–КРГ.
Fig. 2. SEM images (a, b) and EDX spectrum (c) of ChTS–CRG PEC particles.
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При получении полимерного носителя ВНЦ в сла-
бокислых условиях к макроцепи ПЭК, несущей слабый 
положительный заряд (ζ-потенциал комплекса равен  
8 мВ), электростатически притягиваются отрицательно 
заряженные в водном растворе КТ CdS/ZnS и ионизо-
ванные карбоксильные группы ВНЦ. В полученной 
системе ПЭК–КТ–МПК–ВНЦ реализуется сложный 
комплекс межмолекулярных конкурирующих элек-
тростатических взаимодействий, дополненный об-
разованием водородных связей между отдельными 
функциональными группами компонентов. В Таблице 1 
приведены данные о размере и ζ-потенциале частиц 
ПЭК КРГ–ХТЗ, содержащих ВНЦ и КТ CdS/ZnS. ПЭК 
в присутствии КТ и ВНЦ имеет размер 141 нм и отри-
цательный ζ-потенциал. При увеличении содержания 
ВНЦ в полимерном носителе отмечается рост среднего 
размера частиц до 190 нм. ζ-потенциал комплекса ХТЗ–
КРГ, содержащий КТ, в присутствии ВНЦ меняется 
незначительно, что указывает на коллоидную стабиль-
ность полимерных частиц в присутствии антибиотика 

и наночастиц CdS/ZnS. В работе [43] сообщалось, что 
положительно заряженные частицы могут вызывать 
неспецифическое прилипание клеток и взаимодействие 
с белками плазмы, в то время как отрицательно заря-
женные частицы легко поглощаются эндотелиальными 
клетками в печени. Поэтому отрицательно заряженные 
частицы ПЭК в качестве системы доставки лекарствен-
ного вещества могут быть полезными для предотвра-
щения нежелательного взаимодействия с белками при 
длительном ее нахождении в кровотоке.

Для исследования кинетических закономерностей 
высвобождения ВНЦ из инкупсулированной формы 
по тушению люминесценции наночастиц CdS/ZnS, не-
обходимо оценить влияние ВНЦ, инкапсулированного 
в частицы комплексов ХТЗ–КРГ, на люминесценцию 
КТ. С этой целью были получены ПЭК, содержащие по-
стоянное количество КТ, и ВНЦ в широком интервале 
концентраций (от 25 до 1000 мкг/мл). Выбор содержания 
антибиотика в полимерном носителе был обусловлен 
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Рис. 3. СЭМ‑изображение (а), EDX‑спектр (б) и рентгенодифрактограмма порошков (в) КТ CdS/ZnS.
Fig. 3. SEM image (a), EDX spectrum (b), and X-ray diffractogram of CdS/ZnS QD powders (c).



	 КОЛЛОИДНЫЙ ЖУРНАЛ / COLLOID JOURNAL, 2025, том 87, № 5

 584	 ШИЛОВА и др. /  SHILOVA et al.�

Рис. 4. Спектры люминесценции растворов КТ CdS/ZnS, КТ в присутствии ВНЦ (сВНЦ = 25 мкг/мл) и КТ в при-
сутствии ВНЦ различной концентрации, иммобилизованного в ПЭК (а); график в координатах Штерна–Фольмера 
для исследуемой системы (б) (λex = 370 нм, содержание КТ 1.5 мг/мл, состав ПЭК – [КРГ] : [ХТЗ] = 1 : 1).
Fig. 4. Luminescence spectra for solutions of CdS/ZnS QDs, QDs in the presence of VNC (cVNC = 25 µg/mL), and QDs 
in the presence of different concentrations of VNC immobilized in PEC (a) and graph plotted for the studied system in the 
Stern–Volmer coordinates (b) (λex = 370 nm, QD content 1.5 mg/mL; and PEC composition [CGN] : [CHI] = 1 : 1).
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тем, что при проведении антибактериальной терапии 
используются достаточно высокие его концентрации 
(500 мг – при приготовлении растворов для инфузий, 
0.5–2 г – при приеме внутрь) [22].

Зависимости интенсивности люминесценции КТ 
CdS/ZnS в присутствии иммобилизованного ВНЦ при-
ведены на Рис. 4а. Как отмечалось выше, наночастицы 
CdS/ZnS имеют узкую полосу интенсивной люминес-
ценции при 464 нм. При введении добавок свободно-
го ВНЦ и его иммобилизованной формы положение 
пика люминесценции КТ не изменяется. Вместе с тем, 
обращает на себя внимание, что интенсивность люми-
несценции КТ зависит от концентрации ВНЦ и того, 
в какой форме он находится. В присутствии антибио-
тика с самой низкой из изученных нами концентраций 
ВНЦ (25 мкг/мл) отмечается увеличение интенсивности 
эмиссии КТ. Сам ВНЦ демонстрирует полосу люми-
несценции при 340 нм [25]. Проявление собственной 
люминесценции антибиотика влияет на общую лю-
минесценцию системы КТ–ВНЦ. Иммобилизован-
ный в ПЭК ВНЦ той же концентрации практически 
не оказывает влияние на люминесцентные свойства 
наночастиц CdS/ZnS. При дальнейшем увеличении 
концентрации иммобилизованного антибиотика от 50 
до 1000 мкг/мл отмечается тушение люминесценции КТ.

Для определения механизма и константы связыва-
ния ВНЦ, находящегося в инкапсулированной фор-
ме, с КТ CdS/ZnS строили графики в координатах 
Штерна–Фольмера (Рис. 4б). Как видно из рисунка, 
зависимость F0/F – 1 от концентрации ВНЦ представ-
ляет собой прямую линию с наклоном K в области 
концентраций тушителя 35–518 мкМ (50–750 мкг/мл) 
и апроксимируется уравнением с коэффициентом детер-
минации R2 = 0.994. Константа связывания КТ с ВНЦ, 
определенная по графику, составила 6.8∙104 М–1. Та-
ким образом, присутствие ВНЦ, иммобилизованного 

на наночастицах ПЭК ХТЗ–КРГ, оказывает схожее 
влияние на люминесцентные характеристики КТ, как 
и в случае свободного антибиотика [25]. Полимерный 
носитель не влияет на люминесцентные свойства на-
ночастиц CdS/ZnS и, следовательно, данные КТ можно 
использовать в качестве модельного оптического зонда 
при изучении высвобождения антибиотика из систем 
замедленного релизинга.

Особенностью многих антибиотиков является их 
высокая способность к связыванию с белками крови, 
поверхностью клеток и другими поверхностями, что 
существенно осложняет определение их концентра-
ции при высвобождении из носителей в крови и дру-
гих биожидкостях. Для учета влияния этого фактора 
и определения преимущественной мишени для связы-
вания ВНЦ было изучено влияние модельной матрицы 
биологической жидкости на состояние антибиотика. 
Альбумины – это простые белки в организме челове-
ка, которые являются основным компонентом крови, 
составляя до 65% от общего количества белка. Их ос-
новной функцией является транспорт неорганических 
ионов, гормонов, лекарственных веществ в крови [44] 
и поэтому в качестве модели белка крови нами был 
выбран альбумин.

Связывание ВНЦ с АБ изучали на основе данных 
метода УФ‑спектрофотометрии. Состав комплексов 
ВНЦ–АБ определяли методом изомолярных серий 
Остромысленского–Жоба (Рис. 6). Изомолярная кривая 
имеет несимметричный вид, более крутой наклон отме-
чается в области больших концентраций белка. Соотно-
шение компонентов изомолярной серии, отвечающее 
максимуму поглощения, позволяет определить стехио-
метрическое соотношение реагирующих веществ [32]. 
Состав комплекса ВНЦ–АБ, определенный из изомо-
лярный кривой, соответствует молярному отношению 
ВНЦ: АБ = 1.0: 2.0. Определенный состав комплекса 

Рис. 5. СЭМ‑изображение (а) и EDX‑спектр (б) частиц ПЭК–КТ–ВНЦ.
Fig. 5. SEM image (a) and EDX spectrum (b) of PEC–QD–VNC particles.
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свидетельствует о наличии не вовлеченных в процесс 
связывания функциональных групп АБ.

Наличие размытого максимума на изомолярной 
кривой указывает на образование в системе неустойчи-
вого комплекса или несколько близких по оптическим 
свойствам устойчивых комплексов [32]. Найденная 
по тангенсу угла наклона зависимости [АБ]/(А–А0) от 1/
[ВНЦ] константа устойчивости комплекса ВНЦ–АБ 
составила βк = 6.0∙104 М–1. Действительно, константа 
устойчивости комплекса βк < 106, что характеризует 
его как комплекс низкой устойчивости и согласуется 
с формой изомолярной диаграммы. Сравнение констант 
связывания ВНЦ с наночастицами CdS/ZnS и белком 
АБ позволяет сделать предположение, что преиму-
щественной мишенью для связывания антибиотика 
является оптический зонд.

Применение систем пролонгированного высвобо-
ждения инкапсулированных лекарственных веществ 
значительно увеличивает терапевтический эффект 
и минимизирует негативное токсическое воздействие 
лекарственных препаратов на здоровые клетки и ткани 
организма человека за счет создания и поддержания 
концентрации активных компонентов в терапевтиче-
ском диапазоне в течение длительного времени. По-
этому на заключительном этапе работы исследовали 
кинетические закономерности высвобождения ВНЦ 
из наночастиц ПЭК ХТЗ–КРГ, содержащих КТ CdS/
ZnS, в условиях in vitro (Рис. 7а). В качестве приемных 
сред, имитирующих биологическую жидкость, исполь-
зовали растворы трис-буфера и альбумина. Как вид-
но из рисунка, высвобождение ВНЦ из частиц ПЭК 
носит замедленный характер, 75–80% антибиотика 

высвобождается за 10 ч. Обращает на себя внимание, 
что при проведении экспериментов по высвобождению 
с применением в качестве приемной среды раствора 
АБ отмечается снижение скорости выхода антибиотика 
из наночастиц ХТЗ–КРГ по сравнению с трис-буфером.

Для прогнозирования фармакологических профилей 
высвобождения ВНЦ из наночастиц ПЭК проводили 
анализ его механизма. Интерпретация кинетических 
данных высвобождения лекарственных веществ из по-
лимерных носителей осложняется тем, что диффузия 
низкомолекулярных веществ протекает одновременно 
с изменениями самой полимерной матрицы в приемной 
среде (растворением, набуханием, деструкцией) [45]. 
Поэтому анализ механизма высвобождения ВНЦ про-
водили в рамках математической модели Корсмейе-
ра–Пеппаса (Рис. 7б), которая наиболее часто приме-
няется в тех случаях, когда механизм высвобождения 
сложен или неизвестен. Анализ результатов проводили 
исходя из того, что наночастицы ПЭК имеют сфери-
ческую форму. Для таких частиц значение показате-
ля, характеризующего механизм переноса вещества  
n ≤ 0.43, указывает на высвобождение только за счет 
диффузии, которое подчиняется II закону Фика. Если 
значение n лежит в интервале 0.43 ÷ 0.85, в системе ре-
ализуется аномальное высвобождение, контролируемое 
и диффузией лекарственного вещества, и релаксацией 
полимерного носителя. В случае, когда n ≥ 0.85 на-
блюдается контролируемое релаксацией полимерной 
матрицы высвобождение (Case-II transport) [37]. Пока-
затель n определяли как угол наклона линейной части 
зависимости lg lgm m f tt ∞ = ( ) на Рис. 7б (Таблица 2). 
В таблице также приведены коэффициенты диффузии 
D ВНЦ в приемных средах. Данные таблицы указывают 
на то, что процесс высвобождения ВНЦ из частиц ПЭК 
происходит не только за счет его диффузии из поли-
мерной матрицы, а сопровождается релаксацией самой 
матрицы. Коэффициент диффузии ВНЦ в растворе 
белка имеет меньшее значение по сравнению с трис-бу-
фером, что согласуется с ходом кинетических кривых 
высвобождения.

ЗАКЛЮЧЕНИЕ

Получены люминесцентные наночастицы полиэ-
лектролитного комплекса на основе природных по-
лисахаридов хитозана и κ-каррагинана, содержащие 
квантовые точки CdS/ZnS, в качестве многофунк-
циональных систем доставки гликопептидного ан-
тибиотика ванкомицина с высокой эффективностью 
его инкапсулирования. Изучена способность инкапсу-
лированного ванкомицина тушить люминесценцию 
синтезированных квантовых точек и показано, что 
уменьшение интенсивности люминесценции наноча-
стиц CdS/ZnS носит линейный характер в диапазоне 
концентраций антибиотика 35–518 мкМ с коэффи-
циентом детерминации R2 = 0.994. Анализ кинетиче-
ских закономерностей высвобождения ванкомицина 
из наночастиц полиэлектролитного комплекса в ус-
ловиях in vitro в среды, имитирующие биологическую 
жидкость в организме человека, показал отклонение 

Рис. 6. Изомолярная кривая для системы ВНЦ–
АБ в  водном растворе ([ВНЦ] + [АБ] =1∙10–4 М, 

c = [ ]
+ [ ]

ВНЦ

ВНЦ АБ[ ]
; λ = 280 нм).

Fig. 6. Isomolar curve for VNC–albumin (AB) sys-
tem in aqueous solution ([VNC] + [AB] = 1∙10–4 M, 

с = [ ]
+ [ ]

VNC
AB[VNC]

; λ = 280 nm).
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Рис. 7. Кинетические кривые высвобождения ВНЦ из наночастиц ПЭК ХТЗ–КРГ, содержащих КТ CdS/ZnS (а) 
и аппроксимирующие кривые, рассчитанные по математической модели Корсмейера–Пеппаса (б); приемные сре-
ды: 1 – трис-буфер; 2 – раствор АБ (70 мкг/мл).
Fig. 7. Kinetic curves for VNC release from ChTS–CRG PEC nanoparticles containing CdS/ZnS QDs (a) and approximat-
ing curves calculated in terms of the Korsmeyer–Peppas (b); receiving media: 1 – tris-buffer; 2 – ALB solution (70 µg/mL).
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механизма высвобождения от диффузионного и то, 
что часть ванкомицина находится в связанном с альбу-
мином виде. Полученные результаты свидетельствуют 
о перспективности применения полиэлектролитных 
комплексов хитозана с κ-каррагинаном, содержащих 
квантовые точки типа CdS/ZnS, в качестве модельных 

биосовместимых люминесцентных наноносителей для 
антибиотика ванкомицина. Разработанные системы 
доставки ванкомицина обеспечивают высокую эффек-
тивность его инкапсулирования, пролонгированное 
высвобождение и возможность визуализации данного 
процесса в режиме реального времени.

Таблица 2. Параметры высвобождения ванкомицина из наночастиц ПЭК ХТЗ–КРГ, содержащих КТ, в прием-
ные среды.
Table 2. Parameters of vancomycin release from QD-containing ChTS–CRG PEC nanoparticles into receiving media.

Приемные среды
Параметры высвобождения

n D × 107, см2/с
Трис-буфер 0.71 0.59
Раствор АБ (70 мкг/мл) 0.84 1.55
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