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Abstract. Janus particles are one of the forms of existence of heterogeneous micro- and nanoparticles.  
The bifunctionality of their properties is of great practical interest. A convenient mathematical prototype 
of Janus particles is the double bubble described by Plateau when solving the problem of minimal surfaces. 
The main difference between a double bubble and a Janus particle is the additional condition that the 
interphase boundaries can have different elastic properties. The solution for this case is obtained using 
Young’s method. The limits of its existence are indicated. The dependence of the configuration of Janus 
particles on the ratio of surface properties and the volumes that form them is demonstrated.
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ВВЕДЕНИЕ

Частицы с морфологией типа янус отличаются боль-
шим разнообразием и имеют множество практических 
приложений в разных отраслях техники (химический 
катализ, функциональные материалы, медицина) [1, 2]. 
Янус-частицами принято называть класс частиц с ге-
терогенной структурой, которая может возникать при 
расслаивании, плавлении, испарении гомогенных сме-
сей, коагуляции (сплавлении или спекании) частиц 
разного состава. Их поверхность на противоположных 
сторонах имеет разные химический состав и морфоло-
гию, которые определяют физические и химические 
свойства [3] и бифункциональность подобных частиц. 
Термодинамическое описание свойств янус-частиц 
основано на моделировании фазовых превращений 
в наночастицах [4–6]. Важнейшим результатом тако-
го описания является демонстрация влияния формы 
и размера микро- и наночастиц на диаграммы фазо-
вых превращений.

Математическим прототипом янус-частиц является 
двойной пузырь, рассмотренный Плато [7] при реше-
нии проблемы поверхностей с минимальной площадью 
при заданных ограничениях объема или периметра. 
Только в начале ХХI века математики строго доказали, 
что описанный Плато объект является единственной 
конфигурацией из двух пузырей заданных объемов, 
минимизирующей площадь их поверхности [8–10]. 
Это состояние было определено математиками как 
«стандартный двойной пузырь». Кроме него описано 
и неустойчивое (метастабильное) состояние, имеющее 
вид пузыря, перетянутого по экватору тороидальным 
пузырем [9]. Это метастабильное состояние, его можно 

рассматривать как прототип другого реального объек-
та – манжеты, образованной жидкостью между двумя 
сферическими частицами [11]. Согласно Плато, обра-
зующие двойной пузырь три сферические поверхно-
сти сходятся под углом 120°. Это строго доказано для 
случая 3D‑пространства в [10, 12] и имеет обобщение 
для пространств более высокой размерности [13, 14]. 
В монографии Плато рассмотрены и другие интересные 
конфигурации, такие как кластеры из нескольких пузы-
рей и пленки, образующиеся на проволочных каркасах.

Несомненно, строгие доказательства теорем о ми-
нимальных свойствах двойного пузыря имеют большое 
значение. Однако работы математиков практически 
не упоминаются при решении конкретных задач, воз-
никающих в физике и материаловедении. По умол-
чанию используется утверждение, что поверхностная 
энергия прямо пропорциональна площади поверхно-
сти, поэтому минимизация площади и минимизация 
энергии границ являются тождественными способами 
решения проблемы [8].

Янус-частицы отличаются от двойного пузыря тем, 
что образованы разными фазами, поэтому их границы 
могут иметь разные поверхностные свойства. В этом 
случае задачу минимизации энергии решают на ос-
нове метода Юнга [15]. Это позволяет описывать кра-
евые углы для разных конфигураций, например для 
контакта жидкости с твердыми сферическими выпу-
клыми и вогнутыми поверхностями [16], между двумя 
твердыми сферами [11] и другие. Одним из результатов 
обобщения метода Юнга является “треугольник Ней-
мана”, описывающий линию трехфазного контакта, 
в том числе для янус-конфигурации [17, 18]. Предло-
женный в [19] подход позволяет вычислять контактные 
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углы с учетом объема фаз и формы поверхностей, об-
разующих янус-частицу. Это позволяет определить все 
необходимые для геометрических построений радиусы 
и углы, упрощающие моделирование физико-химиче-
ских характеристик янус-частиц.

При термодинамическом моделировании чаще всего 
ограничиваются рассмотрением янус-частиц со сфери-
ческой конфигурацией и плоской межфазной границей 
[4, 5, 20–22]. В какой-то степени это приближение мож-
но оправдать малостью вклада поверхностной энергии 
в полную энергию частицы. Однако корректность такого 
упрощения уменьшается с ростом доли поверхностной 
энергии. Поэтому для микро- и наночастиц возникает 
необходимость обоснования применимости подобных 
упрощений.

Целью работы является модификация модели 
янус-частиц [19] в виде полной системы уравнений, 
удобной для геометрических построений и термоди-
намических расчетов, а также оценка корректности 
использования простых (сферическая форма, плоская 
межфазная граница) конфигураций янус-частиц.

ОБОБЩЕНИЕ МОДЕЛИ ЯНУС-ЧАСТИЦ

Янус-частицу представим в виде трех шаровых сегмен-
тов, имеющих единое основание, ограниченное линией 
трехфазного контакта (Рис. 1). Пусть для определен-
ности левая часть частицы (сегмент L на Рис. 1) запол-
нена фазой α, а правая (сегмент R на Рис. 1) фазой β. 
“Левый” L и “правый” R шаровые сегменты образуют 
внешние границы частицы, а сегмент G  межфазную 
границу.

Сегменты L, R, G имеют общее основание, поэтому 
радиусы rL, rR, rG и углы φL, φR , φG связаны соотноше-
ниями r r rL L R R G Gsin sin sinφ φ φ= = .
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В свою очередь, радиус rL можно определить, если 
определен полный объем частицы V .
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где VL, VR, VG – объемы шаровых сегментов, Vf  – объе-
мы сосуществующих фаз, здесь f = ,α β. Выбор знака 
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объем фазы β (как на Рис. 1), если вправо, увеличива-
ет объем фазы α .
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Рис. 1. Аксиальное сечение янус-частицы (а) и схема приложения поверхностных сил к линии трехфазного кон-
такта (б).
Fig. 1. Axial section of the Janus particle (a) and the scheme of application of surface forces to the three-phase contact line (b).
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где r0 – радиус эквивалентной по объему сферы. Урав-
нения (3) позволяют выразить все радиусы сегментов 
через r0.

Уравнения (1) и (3) понижают число независимых 
переменных до трех (φL, φR , φG). Далее для удобства 
примем r0 1=  и выразим объемы фаз через объемную 
долю q V V= /β .

Для описания изменений формы при вариации объе-
ма сосуществующих фаз воспользуемся подходом Юнга. 
На линии трехфазного контакта действуют силы по-
верхностного натяжения FL, FR, FG (Рис. 1б), которые 
стягивают поверхности соответствующих сегментов 
и площадь их общего основания. Условие компен-
сации поверхностных сил в проекциях на плоскость 
основания сегментов и нормальное к ней аксиальное 
сечение имеет вид

	
σ φ σ φ σ φ
σ φ σ φ σ φ

L L R R G G

L L R R G G

cos cos cos

sin sin sin ,

+ +
+ +

= 0,

= 0
 	  (4)

здесь σ – поверхностное натяжение соответствующей 
межфазной границы.
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Это позволяет описать связь между углами φL, φF, 
φG, краевыми углами ϕLR , ϕLG, ϕRG и поверхностны-
ми свойствами в виде
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(6)

Внешние границы янус-частицы выпуклые, поэтому 
имеют смысл решения с противоположными знаками 
углов φL и φR  в соответствии с приведенной на Рис. 1б 
схемой φL > 0, − < <π φR 0 и φ φ φR G L< < . При этом 
для сегментов, расположенных вершиной вправо, углы 
имеют отрицательное значение. Ориентация сегмента 
G  зависит от объемной доли q.

Область существования решения Ур. (6) определена 
условием σ σ σ σ σL R G L R− +< < , которое по фи-
зическому смыслу определяет состояния неполного 
смачивания. Внутри этого интервала следует ожидать 
возникновения янус-частиц и им подобных струк-
тур. За его пределами необходимо рассматривать либо 

конфигурации типа ядро–оболочка (core–shell), либо 
не слипающиеся пузыри и капли.

Уравнения (1)–(4) сводят описание формы янус-ча-
стицы к единственной независимой переменной, в ка-
честве которой можно выбрать угол φL  или объемную 
долю одной из фаз q. Объем частиц и поверхностные 
свойства являются параметрами модели.

Если объемы пузырей являются функциями внеш-
них условий (T, P), можно воспользоваться получен-
ными на основе уравнений Лапласа соотношениями 
σ σ σR

R

L

L

G

Gr r r
− =  [23].

Из соотношений (5) и (6) легко получить правило 
треугольника Неймана
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Оно удобно при описании тройных стыков границ 
[18, 24] в поликристаллах, концентрированных эмуль-
сиях и пенах. Уравнения (6) дополняют треугольник 
Неймана с учетом того, что в янус-частицах тройной 
стык образован сферическими границами (1)–(3).

Согласно Ур. (1)–(6), углы, радиусы, объемы сег-
ментов являются функциями одной независимой пе-
ременной, в качестве которой проще выбрать один 
из углов (далее использован угол φL). Привязка всех 
величин к единому основанию, ограниченному линией 
трехфазного контакта, упрощает построение модели 
янус-частиц.

Рассмотрим некоторые характерные варианты 
янус-конфигурации, демонстрирующие закономер-
ности, связывающие форму с поверхностными свой-
ствами контактирующих фаз.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ 
КОНФИГУРАЦИИ ЯНУС-ЧАСТИЦ

Сначала воспроизведем наиболее исследованную 
конфигурацию.

Стандартный двойной пузырь
Случай стандартного двойного пузыря достаточно 

детально исследован в работах [8, 10, 14]. В настоящей 
работе описание дополнено условием сохранения объ-
ема и более удобными для моделирования аналитиче-
скими выражениями (6).

Состояния с равными поверхностными натяжени-
ями σ σ σG L R= =  возникают при контакте капель 
эмульсии или мыльных пузырей. В этом случае
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Таким образом, все контактные углы ϕLR, ϕLG, ϕRG 

равны arccos −





1
2

=
2
3
π

 или 120°, как утверждают ги-

потеза Плато [7] и теорема Тейлора [10].

На Рис. 2 приведены состояния с разными q, вос-
производящие конфигурации, описанные Плато [7, 
Рис. 62–64].

В случае φ πL = 2 / 3 образуется симметричная ча-
стица с равными объемами фаз и плоской межфазной 
границей (φ φR L= − , φG = 0 и q = 0.5).

Теперь рассмотрим частицы, границы которых име-
ют разное поверхностное натяжение. В первую очередь 
рассмотрим конфигурации, возникающие на границе 
области существования решения (6).

Идеальное смачивание

Предельный случай σ σ σG L R= −  соответствует 
условию идеального смачивания. В соответствии с (6) 
φ φ πR L= − , силы FL  и FR имеют противоположное 
направление, а согласно (1), сегменты L и R имеют оди-
наковый радиус. Это состояние соответствует переходу 
от янус-конфигурации к структуре ядро–оболочка.

На Рис. 3 показано близкое к предельному состоя-
ние σ σ σG L R= 1.001 − . При этом янус-конфигурация 
сохраняет устойчивость, и слой фазы α  не полностью 
покрывает поверхность фазы β. Такая янус-частица 
имеет практически сферическую форму. Так как в при-
веденном случае σ σR L> , фаза β находится внутри фазы 
α  почти полностью.

Отсутствие смачивания
Другой предельный случай σ σ σG L R= +  соот-

ветствует состоянию абсолютного несмачивания, при 

этом ϕ
σ σ σ

σ σLR
G L R

L R
=

− −





arccos

2 2 2

2
= 0  и φ φR L= . 

Когда поверхностное натяжение внутренней границы 
превышает поверхностное натяжение внешних границ, 
фазы стремятся уменьшить площадь контакта. На Рис. 3 
показаны близкие к этому пределу состояния.

Приближение к границам области существова-
ния уменьшает до нуля поверхность сегмента R при 
σ σ σG L R≅ − , а при σ σ σG L R≅ +  межфазной гра-
ницы и общего основания сегментов. Для этих со-
стояний незначительное изменение угла φL  приводит 
к существенному изменению объемной доли сопри-
касающихся фаз.

Симметричная линзообразная фаза
Несложно описать случай, когда одна из фаз име-

ет вид симметричной линзы. Фаза β имеет такой вид 
при φ φR G= − , а фаза α  при φ φL G= − . В соответ-
ствии с (5)–(6) эти состояния возникают при условии 

φ ϕ ϕL LG RG=
1
2

+  или φ ϕL LG=
1
2

. Объемная доля 
симметричной линзы зависит от соотношения поверх-
ностного натяжения границ и может меняться в интер-
вале 0 < < 1q .

Пример подобных состояний фазы β приведен 
на Рис. 4.

Симметричные конфигурации для каждой из фаз α  
или β реализуются при единственном значении q. Они 
неустойчивы и нарушаются при изменении q или по-
верхностного натяжения любой из границ.

Рис. 2. Изменение конфигурации стандартного двойного пузыря с увеличением объемной доли q.
Fig. 2. Variations in the configuration of a standard double bubble with an increase in volume fraction q.
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К этим уникальным конфигурациям можно добавить 
состояния с плоской межфазной границей φG = 0, которые 

реализуются при φ ϕ
σ σ σ

σ σL LG
R G L

L G
= =

2

2 2 2
arccos

− −





. 

Состояния, при которых внешняя граница одной из фаз 
янус-частицы имеет вид полусферы ( φ πL = /2  либо 
φ πR = /2− ), тоже реализуются в единственной точке 
и нарушаются при любом изменении q либо поверхност-
ного натяжения одной из границ. Тем не менее именно 
подобные нестабильные состояния часто выбираются 
при моделировании или изображении янус-частиц.

Общий случай
На Рис. 5 показана эволюция янус-частицы с ростом 

объемной доли фазы β. Подобные процессы наблюда-
ются экспериментально, когда внутри капель протекают 
фазовые или химические превращения [25, 26].

В экспериментах фиксируются практически все 
представленные на Рис. 2–5 конфигурации. В неравно-
весных условиях янус-частицы могут принимать более 
сложные формы. Этому способствуют разные скорости 
роста и растворения или упруго-пластические свойства 
контактирующих фаз.

Рис. 3. Форма янус-частиц на границах области существования решения (6). Слева – состояния, близкие к идеаль-
ному смачиванию, справа – близкие к абсолютному несмачиванию.
Fig. 3. Shapes of Janus particles at the boundaries of the existence region of the solution of Eqs. (6). The states close to the 
perfect wetting and the absolute nonwetting are presented in the left- and right-hand sides, respectively.

Рис. 4. Янус-частицы с симметричной β фазой.
Fig. 4. Janus particles with a symmetrical β phase.
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Рис. 5. Изменение янус-конфигурации с увеличением объемной доли q при σ σ σL R G: : = 1 : 0.75 : 0.5.
Fig. 5. Variations in Janus configurations with an increase in volume fraction q at σ σ σL R G: : = 1 : 0.75 : 0.5 .
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ЗАКЛЮЧЕНИЕ

Уравнения (1)–(6) описывают все характеристи-
ки янус-структуры: радиусы и углы шаровых сегмен-
тов, образующих янус-частицы, краевые углы, объем 
сегментов и соприкасающихся фаз. Эти параметры 
позволяют при необходимости вычислить площадь 
межфазных границ и длину линии трехфазного кон-
такта. В отличие от метода треугольника Неймана они 
содержат более полный набор величин, необходимый 
для геометрических построений и расчетов.

Уравнения (6) и модели янус-частиц, построенные 
на их основе (Рис. 2–5), позволяют утверждать, что 
форма янус-частиц в общем случае отличается от сфе-
рической (правый и левый сегменты имеют разную 
кривизну) и непрерывно меняется при перераспреде-
лении объема между ее частями.

Если поверхностные свойства границ (σ) являются 
константами, то форма янус-частиц не зависит от объ-
ема. Однако при детальном рассмотрении задач обра-
зования янус-частиц, например, в результате расслаи-
вания реальных растворов, следует учитывать концен-
трационные и размерные эффекты.

Так учет внутреннего (Лапласовского) давления 
может изменить объемную долю фаз q, но не краевые 
углы. Лапласовское давление может изменять краевые 
углы только в том случае, когда оно влияет на поверх-
ностное натяжение межфазных границ [27].

Другой эффект связан с поверхностной активно-
стью компонентов смеси, когда концентрация влияет 
на поверхностное натяжение. Особенно это важно для 
наночастиц, у которых размер влияет на состав сосуще-
ствующих фаз [28] и, соответственно, на поверхностное 
натяжение межфазных границ и конфигурацию янус-ча-
стиц. Концентрационный эффект дополняет зависимость 
поверхностного натяжения от размера наночастиц, ко-
торая описана в пионерской работе Толмена [29].

Зависимость поверхностных свойств границ от раз-
мера и состава частицы способна порождать необыч-
ные явления. Примером являются осцилляции формы 
контактирующих фаз при изменении поверхностных 
свойств межфазных границ [30]. Подобные осцилляции, 
в частности, наблюдались нами в микронных гетеро-
генных каплях разного химического состава [31, 32], 
когда концентрация электролита меняется при испа-
рении или конденсации растворителя. Это влияет как 
на локальное давление пара, размер капли и кристалла, 
так и на поверхностное натяжение участвующих в фа-
зовом превращении межфазных границ.

При моделировании наночастиц необходимо учиты-
вать конфигурацию более точно, так как доля поверх-
ностной энергии в полной энергии образования велика. 
Используемые для описания янус-частиц термодина-
мические модели, ограничивающиеся сферическими 
конфигурациями либо плоской межфазной границей 
[4, 5, 20–22], внесли важный вклад в понимание при-
роды размерных эффектов при фазовых превращениях. 
На основе приведенного рассмотрения можно оценить 
корректность выбора этих простых моделей:

а)  модели янус-частиц c плоской межфаз-
ной границей корректны при углах φG ≈ 0  или 

φ
σ σ σ

σ σL
R G L

L G
≈

− −





arccos

2 2 2

2
;

б) приближение со сферической формой янус-ча-
стиц приемлемо в условиях хорошего смачивания 
σ σ σG L R≈ − . Причем в этих же условиях возможна 
конкуренция и сосуществование наночастиц с core–
shell и янус-состояниями.

Размерные и концентрационные эффекты услож-
няют моделирование, но их учет необходим для пони-
мания закономерностей формирования морфологии 
янус-частиц.



	 КОЛЛОИДНЫЙ ЖУРНАЛ / COLLOID JOURNAL, 2025, том 87, № 6

 854	 ФЕДОСЕЕВ﻿ / FEDOSEEV﻿�

СПИСОК ЛИТЕРАТУРЫ

1.	 Marschelke C., Fery A., Synytska A. Janus particles: from concepts to environmentally friendly materials and sustain-
able applications // Colloid Polym. Sci. 2020. V. 298. № 7. P. 841–865.
https://doi.org/10.1007/s00396-020-04601-y

2.	 Хлебцов Б.Н. Функциональные наночастицы: синтез и практические применения // Коллоид. журн. 2023. 
Т. 85. № 4. P. 399–402. 
https://doi.org/10.31857/s0023291223600426 

3.	 Лернер М.И., Бакина О.В., Казанцев С.О.  и др. Бикомпонентные серебросодержащие наночастицы: связь 
морфологии и электрокинетического потенциала // Коллоид. журн. 2023. T. 85. № 4. P. 443–452. 
https://doi.org/10.31857/s002329122360030x

4.	 Guisbiers G., Khanal S., Ruiz-Zepeda F., et al. Cu–Ni nano-alloy: Mixed, core–shell or Janus nano-particle? // 
Nanoscale. 2014. V. 6. № 24. P. 14630–14635.
https://doi.org/10.1039/c4nr05739b

5.	 Taranovskyy A., Tomán J.J., Gajdics B.D., Erdélyi Z. 3D phase diagrams and the thermal stability of two-component 
Janus nanoparticles: effects of size, average composition and temperature // Phys. Chem. Chem. Phys. 2021. V. 23. 
№ 10. P. 6116–6127.
https://doi.org/10.1039/d0cp06695h

6.	 Wautelet M., Shirinyan A.S. Phase transitions in binary alloys: nanoparticles and nanowires // Arch. Metall. Mater. 
2006. V. 51. № 4. P. 539–545.

7.	 Plateau J. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires // Gauthier-Vil-
lars, Paris. 1873.

8.	 Hutchings M., Morgan M., Ritore F. Proof of the double bubble conjecture // Ann. Math. 2002. V. 155. № 2.  
P. 459–489.
https://doi.org/10.2307/3062123

9.	 Hutchings M., Morgan F., Ritoré M., Ros A. Proof of the double bubble conjecture // Electron. Res. Announc. Am. 
Math. Soc. 2000. V. 6. № 6. P. 45–49.
https://doi.org/10.1090/S1079-6762-00-00079-2

10.	 Taylor J.E. The structure of singularities in soap-bubble-like and soap-film-like minimal surface // Ann. Math. 
1976. V. 103. № 3. P. 489–539.
https://doi.org/10.2307/1970949

11.	 Сдобняков Н.Ю., Соколов Д.Н., Кульпин Д.А. и др. Исследование проблемы термодинамической устойчивости 
манжета жидкости между двумя сферическими наночастицами // Конденсированные среды и межфазные 
границы. 2011. V. 13. № 2. P. 196–202.

12.	 Lawlor G.R. Double bubbles for immiscible fluids in Rn // J. Geom. Anal. 2014. V. 24. № 1. P. 190–204.
https://doi.org/10.1007/s12220-012-9333-1

13.	 Bongiovanni E., Di Giosia L., Diaz A., et al. Double bubbles on the real line with log-convex density // Anal. Geom. 
Metr. Spaces. 2018. V. 6. № 1. P. 64–88.
https://doi.org/10.1515/agms-2018-0004

14.	 Фоменко А.Т. Многомерная задача Плато в римановых многообразиях // Математический сборник. 1972. 
Т. 89(131). № 3(11). С. 475–519.

15.	 Young T. III. An essay on the cohesion of fluids // Philos. Trans. R. Soc. London. 1805. V. 95. № 95. P. 65–87.
https://doi.org/10.1098/rstl.1805.0005

16.	 Jasper W.J., Anand N. A generalized variational approach for predicting contact angles of sessile nano-droplets on 
both flat and curved surfaces // J. Mol. Liq. 2019. V. 281. P. 196–203.
https://doi.org/10.1016/j.molliq.2019.02.039

17.	 Rickayzen G. Molecular theory of capillarity // Phys. Bull. 1983. V. 34. № 10. P. 437–438.
18.	 Virgilio N., Desjardins P., L’Espérance G., Favis B.D. In situ measure of interfacial tensions in ternary and quaternary 

immiscible polymer blends demonstrating partial wetting // Macromolecules. 2009. V. 42. № 19. P. 7518–7529.
https://doi.org/10.1021/ma9005507

19.	 Федосеев В.Б. Равновесная конфигурация янус-частиц при условии компенсации сил поверхностного 
натяжения // Письма в журнал технической физики. 2025. V. 51. № 11. P. 22–25.
https://doi.org/10.61011/PJTF.2025.11.60483.20293



KOLLOIDNYY ZHURNAL / COLLOID JOURNAL, 2025, vol. 87, no. 6

	 МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ЯНУС-ЧАСТИЦ И ОБОБЩЕНИЕ /� 855
	 MATHEMATICAL DESCRIPTION OF JANUS PARTICLES AND A GENERALIZATION �

20.	 Bouar Y. Le, Onera C. An introduction to the stability of nanoparticles // Mech. nano-objects. Les Presses de l’École 
des Mines de Paris. Paris. 2011. P. 1–27.

21.	 Shirinyan A.S. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis ef-
fects // Beilstein J. Nanotechnol. 2015. V. 6. P. 1811–1820.
https://doi.org/10.3762/bjnano.6.185

22.	 Pankaj P., Bhattacharyya S., Chatterjee S. Competition of core–shell and Janus morphology in bimetallic nanopar-
ticles: Insights from a phase-field model // Acta Mater. 2022. V. 233. P. 117933.
https://doi.org/10.1016/j.actamat.2022.117933

23.	 Guzowski J., Korczyk P.M., Jakiela S., Garstecki P. The structure and stability of multiple micro-droplets // Soft 
Matter. 2012. V. 8. № 27. P. 7269–7278. 
https://doi.org/10.1039/c2sm25838b

24.	 Torza S., Mason S.G. Three-phase interactions in shear and electrical fields // J. Colloid Interface Sci. 1970. V. 33. 
№ 1. P. 67–83.
https://doi.org/10.1016/0021-9797(70)90073-1

25.	 Nisisako T. Recent advances in microfluidic production of Janus droplets and particles // Curr. Opin. Colloid In-
terface Sci. 2016. V. 25. P. 1–12.
https://doi.org/10.1016/j.cocis.2016.05.003

26.	 Zhang Q., Xu M., Liu X., et al. Fabrication of Janus droplets by evaporation driven liquid-liquid phase separation // 
Chem. Commun. 2016. V. 52. № 28. P. 5015–5018.
https://doi.org/10.1039/c6cc00249h

27.	 Rekhviashvili S.S., Kishtikova E.V. On the size dependence of a contact angle // Prot. Met. Phys. Chem. Surfaces. 
2012. V. 48. P. 402–405.
https://doi.org/10.1134/S2070205112040156

28.	 Шишулин А.В., Федосеев В.Б. Размерный эффект при расслаивании твердого раствора Cr–W // 
Неорганические Материалы. 2018. V. 54. № 6. P. 574–578.
https://doi.org/10.7868/s0002337x18060040 

29.	 Tolman R.C. The effect of droplet size on surface tension // J. Chem. Phys. 1949. V. 17. № 3. P. 333–337.
https://doi.org/10.1063/1.1747247

30.	 Nikolov A., Wasan D. Oil lenses on the air–water surface and the validity of Neumann’s rule // Adv. Colloid Inter-
face Sci. 2017. V. 244. P. 174–183.
https://doi.org/10.1016/j.cis.2016.05.003

31.	 Федосеев В.Б., Максимов М.В. Осциллирующие фазовые превращения раствор–кристалл–раствор  
в системе состава KCl–NaCl–H2O // Письма в ЖЭТФ. 2015. Т. 101. № 6. С. 424–427. 
https://doi.org/10.7868/S0370274X15060065 

32.	 Федосеев В.Б. Осциллирующие фазовые переходы раствор–газ и раствор–кристалл в каплях растворов  
с одним кристаллизующимся компонентом // Нелинейная динамика. 2017. V. 13. № 2. P. 195–206. 
https://doi.org/10.20537/nd1702004




