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Аннотация. Полимерные мицеллы уже несколько десятилетий остаются одними из самых активно 
исследуемых объектов в области наномедицины, в том числе в рамках фармакотерапии раковых 
заболеваний. Благодаря своему строению “ядро–корона”, регулируемым в широком диапазоне 
параметрам (размеру, форме, сорбционной емкости, скорости разложения и др.), возможности 
придания стимул-чувствительных свойств и пр. полимерные мицеллы зарекомендовали себя как 
перспективные носители, способные эффективно инкапсулировать различные лекарственные 
вещества, адресно доставлять их в целевые ткани и органы, обеспечивая при этом их контро-
лируемое и длительное высвобождение. Несмотря на многочисленные исследования, на сегод-
няшний день в разных частях мира одобрено всего четыре наноформы противораковых агентов 
на основе полимерных мицелл. В представленном обзоре обсуждается один из существенных 
недостатков полимерных мицелл – носителей лекарств, а именно возможность их распада до 
неассоциированных макромолекул при резком разбавлении и/или изменении условий внешней 
среды (pH, температуры, ионной силы раствора) вследствие недостаточной термодинамической 
стабильности (устойчивости). Рассматриваются некоторые стратегии, применяемые для устра-
нения данного недостатка, которые включают в себя химическую сшивку полимерных цепей, 
формирующих ядро или корону мицелл, физическую сшивку сегментов мицеллы за счет допол-
нительных гидрофобных, электростатических взаимодействий или стереокомплексообразова-
ния, а также формирование так называемых мономолекулярных мицелл.

Ключевые слова: полимеры, амфифильные блок-сополимеры, полимерные мицеллы, 
термодинамическая стабильность, системы адресной доставки лекарств, наномедицина, 
противораковая терапия
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Abstract. Polymeric micelles remain actively studied objects in the nanomedicine, including the 
anticancer pharmacotherapy, for several decades. Due to their “core–corona” structure, adjustable 
parameters (i.e. size, shape, sorption capacity, degradation rate, etc.), the ability to impart stimuli-
sensitive properties, etc., polymeric micelles have proven themselves as promising carriers that are 
capable of effective encapsulation of various drug substances, their delivery to target tissues and organs, 
while ensuring their controlled and prolonged release. Despite numerous studies, only four nanoforms 
of anticancer agents based on polymeric micelles have been approved in different parts of the world to 
date. The presented review discusses one of the significant disadvantages of polymeric micelles as drug 
carriers, namely the chance of their disintegration into unassociated macromolecules upon dilution and/
or environmental conditions changes (pH, temperature, ionic strength of the solution), and considers 
some strategies used to eliminate this disadvantage due to insufficient thermodynamic stability. The 
strategies include chemical cross-linking of polymeric chains that form the core or corona of micelles, 
physical cross-linking of micelle segments due to additional hydrophobic, electrostatic interactions or 
stereocomplexation, and the formation of monomolecular micelles.
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ВВЕДЕНИЕ

Наномедицина, в рамках которой для диагностики 
и/или терапии множества заболеваний, в том числе 
раковых, применяют различные наноразмерные (от 
1 до 1000 нм) объекты, активно развивается послед-
ние несколько десятилетий [1–4]. Для визуализации 
и диагностики в комбинации с терапией различных 
опухолей успешно используют металлические нано-
частицы, в частности, золотые [5–7], для фармако-
терапии – в основном липосомы [8–12], липидные 
наночастицы [10, 13–15], полимерные наночастицы 
и полимерные мицеллы [16–21] и пр. Применение 
нанообъектов в качестве систем адресной доставки 
лекарств позволяет улучшать фармакокинетический 
профиль активного вещества путем защиты его от де-
градации в физиологических условиях, “настраивать” 
его биораспределение и обеспечивать накопление  
в целевых тканях и органах, тем самым снижая об-
щую токсичность и повышая эффективность лекар-
ственной терапии [22, 23]. В настоящее время также 
активно получают и исследуют нанорадиосенсибили-
заторы на основе различных наночастиц для достав-
ки в опухоли тяжелых элементов, например, гафния 
или гадолиния, в рамках лучевой терапии [24]. Кро-
ме того, иммунотерапия практически невозможна без 
наноносителей, так как активные агенты (например, 
моноклональные антитела) в свободной форме, как 
правило, стремительно разрушаются и плохо усваи-
ваются иммунными клетками.

Известно, что наноносители, способные длитель-
но циркулировать в кровотоке, накапливаются в по-
раженных тканях и органах благодаря так называе-
мому эффекту повышенной проницаемости и удер-
жания (EPR-эффект, от англ. “enhanced permeability 
and retention effect”) [25, 26]. Как правило, размер та-
ких носителей варьируется от 10 до 200 нм [27]. Счи-
тается, что частицы размером менее 10 нм быстро 
выводятся почками [27], не доходя до целевых тка-
ней, тогда как частицы с диаметром, превышающим  
200 нм, подвергаются фагоцитозу со стороны макро-
фагов, что препятствует их эффективному транспорту 

в опухоли посредством EPR-механизма [28]. Согласно 
EPR-эффекту, проникновение наночастиц в опухоль 
происходит через межэндотелиальные щели, а удер-
жание – за счет дисфункции ее лимфатических сосу-
дов. Однако последние работы указывают на то, что 
помимо упомянутого выше EPR-эффекта существует 
еще и механизм активного транспорта и удержания 
(ATR-эффект, от англ. “the active transport and reten-
tion”), согласно которому нанообъекты проникают  
в опухоль посредством эндотелиального трансцитоза, 
везикуло-вакуолярных органелл и/или миграции им-
мунных клеток (т.е. благодаря активным транспорт-
ным процессам), тогда как удержание происходит за 
счет взаимодействия наночастиц с опухоль-ассоци-
ированными макрофагами, фибробластами, рако-
выми клетками и/или компонентами внеклеточного 
матрикса (Рис. 1) [29]. Таким образом, доставка на-
ночастиц в опухоль может осуществляться путем со-
четания механизмов EPR и ATR. Кроме того, в на-
стоящее время развиваются также подходы “актив-
ного нацеливания” наноносителей, заключающиеся 
в модификации поверхности частиц различными ли-
гандами, обладающими высоким сродством к спец-
ифическим рецепторам в тканях-мишенях, что об-
легчает поглощение модифицированных носителей 
опухолевыми клетками и обеспечивает их повышен-
ное адресное накопление [30–32]. В качестве таких 
лигандов применяют низкомолекулярные соединения 
(например, фолиевую кислоту или биотин), полиса-
хариды, пептиды и пр.

Полимерные мицеллы, самопроизвольно образу-
ющиеся при ассоциации в растворе макромолекул 
амфифильных блок-сополимеров (при определен-
ных условиях), являются крайне перспективными 
объектами для задач наномедицины. Такие мицеллы 
благодаря своему строению “ядро–корона” являют-
ся предпочтительными системами адресной достав-
ки для мало- и нерастворимых в воде лекарственных 
средств. Так, гидрофобное ядро выступает в качестве 
резервуара для молекул лекарства, а гидрофильная 
корона обеспечивает стабильность мицеллы в водной 
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среде и экранирование ее ядра и, соответственно, 
лекарства от растворителя [33, 34]. По сравнению 
со многими “твердыми” наночастицами, которые 
высвобождают загруженный в них лекарственный 
агент медленно, неконтролируемо или неэффектив-
но, полимерные мицеллы, как правило, высвобожда-
ют лекарство в более контролируемой манере [35]. 

К настоящему времени для клинического исполь-
зования в рамках противораковой терапии одобре-
но всего четыре нанопрепарата на основе полимер-
ных мицелл (Рис. 2) [22]. К ним относится “Nanoxel” 
– наноформа паклитаксела на основе полимерных 
мицелл из поли(винилпирролидона)-б-поли(N-изо-
пропилакриламида) (ПВП-б-ПНИПАМ), разрешен-
ная для использования в Индии в 2006 г. для терапии 
метастатического рака молочной железы. В свою оче-
редь, “Nanoxel-M” и “Genexol-PM” представляют со-
бой мицеллы из биоразлагаемого низкомолекулярного 

амфифильного блок-сополимера поли(D,L-лакти-
да)-б-поли(этиленгликоля) (П(D,L)ЛА-б-ПЭГ), со-
держащие доцетаксел и паклитаксел соответственно. 
“Genexol-PM” был одобрен для применения в Корее 
в 2007 г. для терапии рака молочной железы и немел-
коклеточного рака легкого. Препарат “Apealea” – это 
наноформа паклитаксела на основе мицелл из конъю-
гата ретиноевая кислота–ПЭГ. “Apealea” в комбина-
ции с карбоплатином был одобрен Европейским ме-
дицинским агентством в 2018 г. для лечения взрослых 
пациентов с рецидивирующим платино-чувствитель-
ным раком яичников. Однако мицеллы оказались сла-
босвязанными, что приводит к их быстрому распаду в 
кровотоке и, соответственно, профилям биораспреде-
ления, аналогичным для чистого препарата [22].

Несмотря на многочисленные исследования по-
лимерных мицелл в качестве потенциальных систем 
адресной доставки лекарств, наноформ препаратов 

Рис. 1. Схематичное представление EPR-эффекта (а), согласно которому нанообъекты проникают в опухоли через 
межэндотелиальные щели, в том числе через сосудистые разрывы, и удерживаются в них из-за нарушения лим-
фодренажа. Схематичное представление АТR-эффекта (б), в рамках которого наночастицы проникают в опухоли 
преимущественно посредством трансцитоза эндотелиальными клетками, везикуло-вакуолярных органелл и/или 
взаимодействия с циркулирующими иммунными клетками, после чего удерживаются опухоль-ассоциированными 
макрофагами. Адаптировано из [29]. Copyright © 2024, Springer Nature Limited.
Fig. 1. Schematic representation of the EPR effect (a), according to which nanoobjects penetrate into tumors through inter-
endothelial gaps, including vascular ruptures, and are retained in them due to impaired lymphatic drainage. Schematic rep-
resentation of the ATR effect (b) according to in which nanoparticles penetrate into tumors primarily due to transcytosis by 
endothelial cells, vesicular-vacuolar organelles, and/or interaction with circulating immune cells, after which they are retained 
by tumor-associated macrophages. Adapted from [29]. Copyright © 2024, Springer Nature Limited.
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на их основе по-прежнему ограниченное количество 
(Рис. 2). Это связано в том числе с тем, что полимер-
ные мицеллы – это динамические системы, которые, 
попадая в кровоток, могут распадаться и преждевре-
менно высвобождать загруженное лекарство, не до-
стигнув целевых тканей и органов [35]. Известно, что 
основной движущей силой самоорганизации амфи-
фильных блок-сополимеров в растворе являются ги-
дрофобные взаимодействия, в результате которых и 
происходит формирование мицелл при концентра-
ции, превышающей критическую концентрацию ми-
целлообразования (ККМ). При значительном разбав-
лении, а также под воздействием внешних условий, 
например, при изменении pH, температуры или ион-
ной силы раствора, полимерные мицеллы могут дис-
социировать на свободные макромолекулы [36, 37], 
что ограничивает их практическое применение в ка-
честве средств доставки лекарств. Поэтому при разра-
ботке лекарственных наноформ на основе полимер-
ных мицелл необходимо либо оптимизировать струк-
туру и состав исходного полимера, либо использовать 
другие стратегии повышения устойчивости (здесь и 
далее под “устойчивостью” подразумевается термоди-
намическая стабильность) мицелл, которые включа-
ют в себя химическую или физическую сшивку бло-
ков, формирующих ядро и/или корону, получение 
мономолекулярных мицелл и пр. 

Отметим, что ежегодно публикуется большое ко-
личество обзоров, посвященных полимерным мицел-
лам [30, 31, 38–48]. Чаще всего в них рассматриваются 
такие вопросы, как оптимизация загрузки и кинети-
ки высвобождения лекарственных агентов из мицелл 
[39, 40], функционализация поверхности мицелл  

с целью придания им стимул-чувствительных свойств 
[31, 41] или обеспечения их “активного нацелива-
ния” [30], последние достижения в борьбе с опреде-
ленным заболеванием с использованием полимерных 
мицелл-носителей лекарств [42–44], методы исследо-
вания мицелл [45] и пр. Однако проблема недостаточ-
ной термодинамической стабильности полимерных 
мицелл, на наш взгляд, мало освещена в литературе. 
Так, в [46] рассматривается применение только физи-
чески (т.е. нековалентно) сшитых полимерных мицелл 
для биомедицинских применений, некоторые приме-
ры нековалентных взаимодействий между макромо-
лекулами амфифильных блок-сополимеров, а именно 
гидрофобные, “гость–хозяин” и координационные,  
в результате которых формируются физически сшитые 
мицеллы, рассмотрены в [47], в [48] приведены приме-
ры получения мономолекулярных мицелл. 

В данном обзоре внимание сосредоточено на 
мицеллах на основе синтетических амфифильных 
блок-сополимеров, которые используются (в основ-
ном) как потенциальные системы доставки проти-
вораковых лекарственных препаратов. Рассматрива-
ются такие стратегии повышения их термодинамиче-
ской стабильности (устойчивости), как химическая 
сшивка блоков, формирующих ядро и/или корону, 
комплексообразование за счет нековалентных вза-
имодействий между блоками (так называемая фи-
зическая сшивка) и получение мономолекулярных 
мицелл, то есть мицелл, сформированных одной ам-
фифильной макромолекулой, обсуждаются их досто-
инства и недостатки. 

Рис. 2. Нанопрепараты на основе полимерных мицелл, одобренные для клинического применения или исследованные 
в клинических испытаниях для противораковой терапии. Для каждого препарата приведен состав полимера – основы 
для мицеллы, инкапсулированный лекарственный агент (ЛА), гидродинамический диаметр мицеллы (Dh) и период 
полувыведения из кровотока (t1/2). Адаптировано из [22]. Copyright © 2025, Elsevier (Open Access).
Fig. 2. Nanopreparations based on polymeric micelles approved for clinical use or investigated in clinical trials for anticancer 
therapy. The composition of the initial polymer – base of the micelle the encapsulated active pharmaceutical ingredient (API), 
the hydrodynamic diameter of the micelle (Dh) and the half–life from the bloodstream (t1/2) are given for each nanosomal 
drug form. Adapted from [22]. Copyright © 2025, Elsevier (Open Access).

Полимерные мицеллы

Nanoxel
ПВП–ПНИПАМ сополимер

ЛА: Паклитаксел
D  : 80–100 нм

t     : 2–4 ч
h

1/2

Nanoxel-M
ПЭГ–П(D,L)ЛА сополимер

ЛА: Доцетаксел
D  : 10–50 нм

t     : 2–3 ч
h
1/2

Genexol-PM
ПЭГ–П(D,L)ЛА сополимер

ЛА: Паклитаксел
D  : 20–50 нм
t     : 2.5–5 ч
h
1/2

Apealea
Ретиноевая кислота–ПЭГ

ЛА: Паклитаксел
D  : 20–30 нм

t     : 5–6 ч
h

1/2
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ХИМИЧЕСКАЯ СШИВКА СЕГМЕНТОВ 
ПОЛИМЕРНОЙ МИЦЕЛЛЫ КАК СТРАТЕГИЯ 

ПОВЫШЕНИЯ ЕЕ УСТОЙЧИВОСТИ

Одной из часто применяемых стратегий повыше-
ния устойчивости полимерных мицелл к внешним 
воздействиям и предотвращения преждевременного 
высвобождения загруженного в них вещества являет-
ся сшивка за счет ковалентных взаимодействий ги-
дрофобных или гидрофильных сегментов макромо-
лекул, формирующих мицеллярное ядро или корону 
соответственно. В основном для получения хими-
чески сшитых мицелл в состав цепи одного из бло-
ков амфифильного блок-сополимера вводят фото-/
УФ-сшиваемые функциональные группы или груп-
пы, способные к полимеризации, после чего в систе-
му добавляют сшивающий агент и воздействуют на 
нее внешним стимулом [49]. Однако отметим, что су-
ществуют и другие подходы для получения химически 
сшитых полимерных мицелл, выбор которых зависит, 
в том числе, от природы загружаемого лекарственно-
го агента [50]. Например, в случае агентов на основе 
комплексов переходных металлов, таких как платина 
или рутений, непосредственно молекула лекарствен-
ного вещества может выступать в качестве сшиваю-
щего агента [51, 52]. Так, в [51] получили сшитые по-
лимерные мицеллы за счет комплексообразования 
между молекулами цис-диамминдихлороплатины(II) 
(цисплатина) и блок-сополимера этиленгликоля  
и аспарагиновой кислоты, характеризующиеся про-
лонгированным временем циркуляции в кровотоке  
и специфическим аккумулированием в опухоли. В 
случае лекарственных агентов из класса таксанов 
(противоопухолевых препаратов паклитаксела, до-
цетаксела и пр.) или антрациклинов (антибиоти-
ков) часто получают конъюгаты мицелл с молекула-
ми действующих веществ, используя клик-химию, 
формирование амидных связей и др. [53, 54]. В дан-
ном разделе будут рассмотрены примеры получе-
ния химически сшитых мицелл за счет образования 
ковалентных связей между гидрофобными или ги-
дрофильными сегментами молекул амфифильных 
блок-сополимеров.

Одна из первых работ, в которой успешно реа-
лизовали концепцию повышения стабильности по-
лимерных мицелл за счет химической сшивки ядра, 
была опубликована в 1979 г. [55]. На основе тройных 
блок-сополимеров поли(стирола)-б-поли(бутадие-
на)-б-поли(стирола) (ПС-б-ПБ-б-ПС) в смеси те-
трагидрофуран (ТГФ)/2-метоксиэтанол с варьируе-
мой объемной долей (φ) последнего от 36 до 55 об. % 
 получили сферические мицеллы, состоящие из ПБ 
ядра, окруженного ПС короной. Химическую сшив-
ку ПБ цепей, содержащих большое количество ре-
акционноспособных двойных связей, осуществляли  
с помощью УФ-облучения (λ = 360 нм) в присутствии 
дибензоилпероксида в качестве фотоинициатора. 
Методами статического рассеяния света и аналити-
ческого ультрацентрифугирования было установле-
но, что после добавления к полученной суспензии 

ТГФ (хорошего растворителя для обоих блоков,  
φТГФ = 64 об. %) ПС-б-ПБ-б-ПС мицеллы с химиче-
ски сшитыми ПБ ядрами сохраняют свою структуру 
и не распадаются до свободных блок-сополимерных 
цепей. В дальнейшем были опубликованы работы, 
посвященные образованию и исследованию поли-
мерных мицелл с химически сшитой короной [56, 57]. 
Thurmond и др. получили сферические мицел-
лы на основе ПС-б-поли(4-винилпиридина)  
(ПС47-б-ПВП55, цифры обозначают степень полиме-
ризации того или иного блока) сополимера в смеси 
ТГФ/вода (φH2O = 30 об. %) со сшитой ПВП коро-
ной [56]. Для этого проводили кватернизацию цепей 
гидрофильного блока ПВП посредством реакции  
ПС47-б-ПВП55 с п-(хлорметил)стиролом, затем в си-
стему вводили водорастворимый радикальный ини-
циатор 4,4ʹ-азобис(4-циановалериановую кислоту), 
смесь облучали (λ = 254 нм) в течение 24 ч, в резуль-
тате чего происходила сшивка гидрофильных цепей  
в короне ПС47-б-ПВП55 мицелл посредством ради-
кальной полимеризации стиренильных боковых групп 
ПВП блока. В [57] в смеси ТГФ/вода были сформи-
рованы сферические мицеллы на основе поли(акри-
ловой кислоты)-б-ПС (ПАК120-б-ПС130), состоящие 
из ПС ядра, стабилизированного сшитой гелеобраз-
ной ПАК короной, способной в 2–3 раза набухать  
в водной среде. Сшивку ПАК цепей осуществляли 
посредством реакции амидирования с использовани-
ем таких сшивающих агентов, как 2,2′-(этилендиок-
си)-бис(этиламин), гексакис(этиленгликоль)диамин, 
гексаметилендиамин и триэтилентетрамин.

После выхода пионерских работ [55–57] было опу-
бликовано множество статей, посвященных получе-
нию мицелл с химически сшитым ядром или короной 
[58–65]. Однако химическая сшивка, обеспечиваю-
щая, с одной стороны, получение высокоустойчивых 
полимерных мицелл, оказалась способна приводить к 
замедленному или неполному высвобождению загру-
женного вещества [61, 66], а также снижению эффек-
тивности его загрузки [67]. Поэтому в последние два 
десятилетия ведутся активные разработки и исследо-
вания сшитых стимул-чувствительных мицелл, спо-
собных контролируемо высвобождать загруженный 
лекарственный агент вследствие какого-либо внеш-
него воздействия: изменения температуры [68, 69], 
pH [69–72], редокс-потенциала [73–76] и пр. 

Например, в [74] получили сферические ре-
докс-чувствительные сшитые мицеллы на основе 
звездообразных амфифильных блок-сополимеров 
поли(фурфурилметакрилата)-б-поли(этиленоксида)2 
(ПФМАn-б-(ПЭО45)2), гидродинамический радиус 
(Rh) которых варьировался от 25 до 33 нм в зависимо-
сти от степени полимеризации гидрофобного ПФМА 
блока (n = 9, 12 и 15 мономерных звеньев). Звездо-
образный блок-сополимер ПФМАn-б-(ПЭО45)2 пред-
ставлял собой Y-образный сополимер типа АВ2 (два 
полимерных блока-луча, одна точка соединения). 
Водные суспензии мицелл готовили диализом, в ка-
честве неселективного органического растворителя 
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использовали ацетонитрил. Химическую сшивку 
ПФМА цепей в ядре мицелл осуществляли с помо-
щью дисульфид-содержащего бисмалеимидного сши-
вающего агента дитиобис(малеимидо)этана (ДТМЭ): 
образование ковалентных связей происходило меж-
ду малеимидными фрагментами ДТМЭ и фурановы-
ми фрагментами ПФМА по реакции Дильса-Альде-
ра. Схема синтеза используемых в [74] сополимеров 
и получения сшитых ПФМАn-б-(ПЭО45)2 мицелл 
приведена на Рис. 3а и 3б соответственно. Благода-
ря наличию дисульфидных связей (–S–S–) в сши-
том ПФМА ядре и их способности легко восстанав-
ливаться до тиоловых групп (–SH) под воздействием 
клеточного микроокружения, ПФМАn-б-(ПЭО45)2 
мицеллы могут контролируемо высвобождать загру-
женный в них лекарственный агент. Это было экспе-
риментально подтверждено при добавлении к водной 
суспензии ПФМАn-б-(ПЭО45)2 мицелл, нагруженных 
доксорубицином (ДОКС), раствора восстанавливаю-
щего агента 1,4-дитиотреитола (ДТТ). При pH = 7.4 
и 5.0 количество высвободившегося за 48 ч ДОКС 
из ПФМАn-б-(ПЭО45)2 мицелл с не сшитым ПФМА 
ядром (микНСШМ/ДОКС) составило 35 и 63% со-
ответственно, тогда как при аналогичных условиях 
из ПФМАn-б-(ПЭО45)2 мицелл со сшитым ПФМА 
ядром (микСШМ/ДОКС) высвободилось всего 12 и 
22% ДОКС соответственно (Рис. 3в). При добавле-
нии же восстанавливающего агента ДТТ к суспензии 
микСШМ/ДОКС мицелл наблюдали возрастание 
скорости высвобождения ДОКС: количество высво-
бодившего за то же время лекарственного агента со-
ставило 29% (pH = 7.4) и 60% (pH = 5.0) (Рис. 3в). Та-
ким образом, в нормальных физиологических усло-
виях высвобождение ДОКС из ПФМАn-б-(ПЭО45)2 
мицелл минимально, тогда как при патологических 
условиях в опухоли оно существенно возрастает. Так-
же установлено, что химическая сшивка ПФМА це-
пей в ядре ПФМАn-б-(ПЭО45)2 мицелл способство-
вала росту эффективности загрузки (ЕЕ, от англ. “en-
capsulation efficacy”) ДОКС в частицы: величина ЕЕ 
для микНСШМ/ДОКС и микСШМ/ДОКС составила 
66.8 и 76.0% соответственно. Кроме того, нагружен-
ные лекарственным агентом ПФМАn-б-(ПЭО45)2 ми-
целлы со сшитым ПФМА ядром оказались стабильны 
в течение 20 дней в условиях, близких к физиологи-
ческим (pH = 7.4). По данным динамического рассе-
яния света (ДРС) величина Rh сшитых мицелл прак-
тически не менялась (Rh ~36–40 нм), что, по-видимо-
му, связано с образованием ПФМА сетки в результате 
химической сшивки, ограничивающей мобильность 
сегментов полимерных цепей и фиксирующей струк-
туру таких мицелл. В свою очередь, значение Rh для 
нагруженных ДОКС ПФМАn-б-(ПЭО45)2 мицелл  
с не сшитым ПФМА ядром возрастало от 42 до 61 нм 
в течение 20 дней, что указывает на меньшую ста-
бильность по сравнению со сшитыми мицеллами. 

В [75] получили два типа редокс-чувстви-
тельных мицелл на основе линейного сополиме-
ра ПФМА9-б-ПЭО45 со сшитым ПФМА ядром, 

содержащим диселенидные (–Se–Se–) и дисуль-
фидные (–S–S–) связи – (Se-ПФМА9-б-ПЭО45)2 
и (S-ПФМА9-б-ПЭО45)2 соответственно. Химиче-
скую сшивку гидрофобных цепей в ядре ПФМА9-
б-ПЭО45 мицелл осуществляли также по реакции 
Дильса-Альдера с использованием малеимидных 
сшивающих агентов (ДТМЭ и диселенобис(малеи-
мидо)этан (ДсеМЭ)). Оба типа мицелл, нагружен-
ных ДОКС, оставались стабильными в фосфатно-со-
левом буфере при pH = 7.2 и 6.5 при 4 и 24°C в те-
чение семи дней: изменения их размера и индекса 
полидисперсности (ИП) не наблюдали. Добавле-
ние же к водной суспензии (Se-ПФМА9-б-ПЭО45)2 
и (S-ПФМА9-б-ПЭО45)2 мицелл 10 мМ глутатиона 
(ГТТ) и 100 мМ H2O2 (т.е. моделирование микроо-
кружения опухоли) приводило к структурным изме-
нениям исследуемых мицелл. Так, при инкубации 
(Se-ПФМА9-б-ПЭО45)2 и (S-ПФМА9-б-ПЭО45)2 ми-
целлярных суспензий с 10 мМ ГТТ наблюдали воз-
растание размера и ИП мицелл, что, по-видимому, 
связано с разрывом диселенидных и дисульфидных 
связей в ПФМА ядрах с образованием –SeH и –SH 
групп соответственно. В свою очередь, инкубация 
(Se-ПФМА9-б-ПЭО45)2 мицелл с 100 мМ H2O2 также 
приводила к росту их размера и ИП, происходяще-
му, возможно, вследствие разрыва –Se–Se– связей  
и образования SeOOH, тогда как никаких изменений 
в случае (S-ПФМА9-б-ПЭО45)2 мицелл после добав-
ления H2O2 не наблюдали. При исследовании кинети-
ки высвобождения ДОКС из (Se-ПФМА9-б-ПЭО45)2 
и (S-ПФМА9-б-ПЭО45)2 мицелл обнаружено, что  
в присутствии 10 мМ ГТТ (pH = 5.0) скорость высво-
бождения ДОКС из (S-ПФМА9-б-ПЭО45)2 мицелл 
ниже, чем из (Se-ПФМА9-б-ПЭО45)2. При введении 
же 100 мМ H2O2 количество высвободившегося агента 
за 48 ч составило 20 и 70% для (S-ПФМА9-б-ПЭО45)2 
и (Se-ПФМА9-б-ПЭО45)2 мицелл соответственно. Та-
ким образом, показано, что (Se-ПФМА9-б-ПЭО45)2 
мицеллы являются более редокс-чувствительны-
ми по сравнению с (S-ПФМА9-б-ПЭО45)2 мицел-
лами и могут быть перспективными объектами для 
наномедицины.

В [77] получили и исследовали стимул-чувстви-
тельные мицеллы на основе амфифильного триб-
лок-сополимера ABC-типа поли(1-нитробензил)ме-
такрилат-б-поли(N-3-имидазолилпропил)метак-ри- 
ламид-б-поли[метоксиполи(этиленгликоль)метак-ри- 
лат] (ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА)9), со-
стоящие из гидрофобного ПНБМА ядра, покры-
того слоем из способного к химической сшив-
ке ПИмПМ, окруженного внешней гидрофиль-
ного П(П(ЭГ)МА) короной (Рис. 4). Наличие  
в ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА)9 сопо-
лимере pH-чувствительных имидазольных групп 
в боковой цепи ПИмПМ, а также фотолабильных  
о-нитробензойных групп в боковой цепи ПНБМА 
обеспечивает pH- и УФ-чувствительные свойства 
блок-сополимерных мицелл. 
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Сшивку ПИмПМ цепей в сферических 
ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА)9 мицел-
лах осуществляли посредством комплексообразо-
вания с Zn2+ (Рис. 4), что приводило к снижению 
величины гидродинамического диаметра (Dh) ми-
целл от 120 ± 3 до 87 ± 2 нм. Кроме того, химическая 
сшивка способствовала повышению термодинами-
ческой стабильности мицелл: значение ККМ для 
ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА)9 мицелл со 
сшитым ПИмПМ слоем составило 7.1·10–4 мг/мл, тогда 
как для не сшитых мицелл – 1.4·10–3 мг/мл. Также уста-
новлено, что ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА)9 
мицеллы со сшитым ПИмПМ слоем, нагруженные 
ДОКС, характеризуются меньшей скоростью высво-
бождения лекарственного агента по сравнению с 
не сшитыми мицеллами. Так, количество высвобо-
дившегося за 64 ч ДОКС из не сшитых мицелл при  
pH = 7.4, 6.5 и 5.0 составило 7.8, 15.1 и 53.6% соот-
ветственно, тогда как из мицелл со сшитым ПИмПМ 
слоем – 4.8, 14.6 и 42.3%. В свою очередь, воздей-
ствие УФ-облучения (λ = 365 нм, 10 мин) приводи-
ло к существенному росту скорости высвобождения 
ДОКС из сшитых ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)-
5МА)9 мицелл при pH = 5.0, что, по-видимому, свя-
зано с их разрушением в результате облучения. Та-
ким образом, химическая сшивка ПИмПМ цепей в 
исследуемых мицеллах может снижать нежелатель-
ное преждевременное высвобождение ДОКС из 
ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА)9 при их цир-
куляции в кровотоке, а фоточувствительные о-нитро-
бензильные группы в ПНБМА ядре могут обеспечить 
настраиваемое высвобождение лекарственного агента 
в целевом органе. 

Анализ литературы показал, что химически сши-
тые мицеллы активно исследуют в качестве потен-
циальных носителей для адресной доставки лекар-
ственных веществ. Однако работ, посвященных изу-
чению влияния природы химической сшивки, длины 
сшивающего блока и пр. на стабильность сшитых ча-
стиц, их поведение in vivo, иммунный ответ и взаимо-
действие с моноцитами (разновидность лейкоцитов, 
уничтожающие различные патогены) и др., опубли-
ковано немного [50, 78]. Например, в [78] исследова-
ли влияние природы гидрофильной короны, а также 
плотности химической сшивки гидрофобных цепей в 
ядре блок-сополимерных мицелл на иммунный ответ, 
а также их взаимодействие с моноцитами человека. 
Мицеллы получали на основе амфифильных блок-со-
полимеров, гидрофобный блок которых представлял 
собой статистический сополимер бутилакрилата (БА) 
и винилдиметилазлактона (ВДМ) с различным моль-
ным содержанием ВДМ (от 0 до 10 мол. %), высту-
пающего в качестве сшивающего агента. В качестве 
гидрофильного блока использовали поли(этиленгли-
коль)акрилат (ПЭГА), поли(N-акрилоилморфолин) 
(ПНАМ) или поли(N-акрилоилтиоморфолин оксид) 
(ПНАТО). Обнаружено, что природа гидрофильной 
короны блок-сополимерных мицелл оказывает незна-
чительное влияние на иммунный ответ в физиологи-
ческих условиях. Мицеллы же с малой плотностью 
сшивки ВДМ цепей в П(БА-со-ВДМ) ядре вызыва-
ли иммуномодулирующий эффект, заключающийся 
в усиленном высвобождении цитокинов из изоли-
рованных моноцитов человека (воспалительный от-
вет организма), тогда как введение мицелл с высокой 
плотностью сшивки (10 мол. % ВДМ) позволяло из-
бегать нежелательного иммунного ответа. 
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Рис. 3. Схема синтеза ПФМАn-б-(ПЭО45)2 сополимеров (а), схема получения мицелл на основе ПФМАn-б-(ПЭО45)2 
с различным типом ядер (б) и кинетика высвобождения лекарственного агента ДОКС из ПФМАn-б-(ПЭО45)2 ми-
целл в зависимости от типа ядра (не сшитое/сшитое), значения pH и наличия восстанавливающего агента ДТТ (в). 
Адаптировано из [74]. Copyright © 2023, American Chemical Society.
Fig. 3. Scheme of synthesis of PFMAn-b-(PEO45)2 copolymers (a), scheme of obtaining micelles based on PFMAn-b-
(PEO45)2 with different types of core (b) and cumulative release kinetics of the drug agent DOX from PFMAn-b-(PEO45)2 
micelles depending on the type of core (not cross-linked/cross-linked), pH values and the presence of the reducing agent DTT 
(с). Adapted from [74]. Copyright © 2023, American Chemical Society.
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Отметим, что, несмотря на преимущества химиче-
ски сшитых блок-сополимерных мицелл по сравне-
нию с не сшитыми мицеллами (повышенную термо-
динамическую стабильность, меньший размер, кон-
тролируемое высвобождение загруженных агентов и 
пр.), образование ковалентных связей в ядре и/или 
короне мицеллы может оказывать негативное вли-
яние как на биодеградируемость носителя, так и на 
биоактивность загруженного в него лекарственного 
агента [79]. Кроме того, методики синтеза амфифиль-
ных блок-сополимеров, используемых для получения 
химически сшитых мицелл со стимул-чувствитель-
ными свойствами, как правило, длительные, трудо-  
и ресурсоемкие [80].

ФИЗИЧЕСКАЯ СШИВКА СЕГМЕНТОВ 
ПОЛИМЕРНОЙ МИЦЕЛЛЫ КАК СТРАТЕГИЯ 

ПОВЫШЕНИЯ ЕЕ УСТОЙЧИВОСТИ

Для улучшения устойчивости полимерных ми-
целл, увеличения в них содержания загруженного ле-
карственного вещества и обеспечения его пролонги-
рованного и настраиваемого высвобождения многие 
исследователи сосредоточили свое внимание на полу-
чении так называемых смешанных мицелл – мицелл, 
состоящих из блок-сополимеров различного состава, 
образованных в результате гидрофобных и электро-
статических взаимодействий, стереокомплексообра-
зования, взаимодействий типа “гость–хозяин”, об-
разования водородных связей и пр., то есть за счет 
физической сшивки сегментов мицеллы [79]. 

Гидрофобные взаимодействия
Смешанные полимерные мицеллы, образован-

ные за счет гидрофобных взаимодействий, можно 
получать на основе смесей линейных амфифиль-
ных блок-сополимеров, например, Pluronic F127  
и Pluronic P123 [81],  П(D,L)ЛА-б-ПЭГ и 

поли(L-гистидин)-б-ПЭГ (ПГИС-б-ПЭГ) [82], Plu-
ronic P123 и Pluronic F88 [83], смесей линейного амфи-
фильного блок-сополимера и гомополимера, напри-
мер, П(D,L)ЛА-б-ПЭГ и поли(L,L-лактида) (П(L,L)
ЛА) [84], смесей линейного и разветвленного амфи-
фильных блок-сополимеров, например, Pluronic F127  
и поли[(этиленгликоль)метилметакрилата-со-лаурил-
метакрилата] [85] и др.

В [83] исследовали мицеллы на основе смеси двух 
биосовместимых амфифильных триблок-сополи-
меров поли(этиленоксида)-б-поли(пропиленокси-
да)-б-поли(этиленоксида) (ПЭО-б-ППО-б-ПЭО),  
а именно Pluronic P123 (ПЭО20-б-ППО70-б-ПЭО20) 
и Pluronic F88 (ПЭО104-б-ППО39-б-ПЭО104), в ка-
честве потенциальных носителей для слабораство-
римого в воде кверцетина. Кверцетин – это био-
активный флавоноид, который обладает широким 
спектром фармакологических свойств – противоо-
пухолевыми, противовоспалительными, антигиста-
минными и пр. Смешанные Pluronic P123/Pluronic 
F88 мицеллы, нагруженные кверцетином, получали 
методом гидратации тонкой пленки (смесь блок-со-
полимеров и лекарства растворяли в хлороформе, 
органический растворитель удаляли при помощи 
ротационного испарителя, в результате чего получа-
ли тонкую пленку, к которой затем добавляли воду). 
Установлено, что варьирование массового соотноше-
ния блок-сополимеров на этапе синтеза смешанных 
мицелл позволяет получать мицеллы с повышенной 
термодинамической устойчивостью. Так, по данным 
УФ-спектрофотометрии величина ККМ для чистых 
сополимеров Pluronic P123 и Pluronic F88 составляет 
0.001 и 1.7 масс./об. % [86], тогда как для их смесей зна-
чение ККМ снижается от 0.084 до 0.0092 масс./об. % 
при варьировании массового соотношения Pluronic 
P123 : Pluronic F88 от 1 : 2 к 2 : 1. При этом массовое 
соотношение блок-сополимеров не оказывало влия-
ния на величину Dh смешанных Pluronic P123/Pluron-
ic F88 мицелл, которая составила ~20 нм, и их форму: 
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Рис. 4. Схема получения ПНБМА5-б-ПИмПМ10-б-П(П(ЭГ)5МА9) мицелл и последующей химической сшивки 
ПИмПМ цепей в их составе посредством комплексообразования с ионами цинка. Адаптировано из [77]. Copyright 
© 2023, Elsevier B.V.
Fig. 4. The scheme of obtaining PNBMA5-b-PImPM10-b-P(P(EG)5MA9) micelles and subsequent chemical cross-linking 
of PImPM chains in their composition by complexation with zinc ions. Adapted from [77]. Copyright © 2023, Elsevier B.V.
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все мицеллы обладали сферической морфологией. 
Полученные смешанные мицеллы Pluronic P123/Plu-
ronic F88, нагруженные кверцетином, характеризова-
лись пролонгированным высвобождением активного 
агента (по сравнению с чистым лекарством) и эффек-
тивно in vitro ингибировали рост опухолевых клеток 
линии MCF-7 (аденокарциномы молочной железы 
человека). Так, при pH 7.4 и 30°С за 12 ч наблюдали 
высвобождение лишь 30% кверцетина из смешанных 
Pluronic P123/Pluronic F88 мицелл (2 : 1), тогда как  
в случае чистого лекарства – 60% за то же время. 

В [82] получали и исследовали смешанные  
pH-чувствительные мицеллы на основе П(D,L)ЛА-
б-ПЭГ и ПГИС-б-ПЭГ сополимеров. Для обеспече-
ния адресной доставки мицелл в опухоль по меха-
низму “активного” нацеливания П(D,L)ЛА-б-ПЭГ 
дополнительно модифицировали фосфатидилсе-
рин-связывающим пептидом (ФССП-6). ФССП-6 
состоит из 14 аминокислотных остатков, обладает 
высоким сродством и способностью к специфично-
му связыванию с фосфатидилсерином – анионно-
му фосфолипидному компоненту клеточной мем-
браны, который в раковых клетках находится не во 
внутренней, а в наружной поверхности мембраны 
сосудистого эндотелия (в отличие от здоровых кле-
ток). Стимул-чувствительность смешанных ФССП-6- 
П(D,L)ЛА-б-ПЭГ/ПГИС-б-ПЭГ мицелл обеспечива-
лась наличием ПГИС блока: в кислой среде имидазо-
льная группа становится положительно заряженной, 
что должно приводить к дестабилизации мицелляр-
ной структуры и высвобождению лекарства внутри 
опухоли. Полученные диализом из диметилсуль-
фоксида смешанные ФССП-6-П(D,L)ЛА-б-ПЭГ/
ПГИС-б-ПЭГ (25/75 масс. %) мицеллы обладали сфе-
рической формой, наноразмером (Dh = 220 ± 10 нм) 
и малым ИП (0.17 ± 0.03), а также характеризовались 
высокой термодинамической стабильностью: по дан-
ным флуоресцентной спектроскопии величина ККМ 
составила 4 мкг/мл. Полученные мицеллы оказа-
лись устойчивы в диапазоне pH от 9.0 до 7.4 (размер  
~200 нм оставался постоянным), тогда как в кислой 
среде (pH ≤ 6.5) становились не стабильны (наблю-
дали резкое увеличение их Dh до 500 нм и более). 
По-видимому, наблюдаемый рост размера мицелл со 
снижением рН связан с протонированием имидазо-
льной группы, входящей в состав ПГИС блока, кото-
рое приводит к росту сил электростатического оттал-
кивания, ослаблению гидрофобных взаимодействий 
и увеличению набухания мицелл, и чем выше степень 
ионизации ПГИС (чем выше кислотность среды), тем 
больше степень набухания и, соответственно, размер 
мицелл. ФССП-6-П(D,L)ЛА-б-ПЭГ/ПГИС-б-ПЭГ 
мицеллы эффективно инкапсулировали паклитаксел: 
величина ЕЕ равнялась 83.5 ± 4.82% при исходной за-
грузке 10 масс. % (относительно массы смеси блок-со-
полимеров). Скорость высвобождения паклитаксела 
из смешанных ФССП-6-П(D,L)ЛА-б-ПЭГ/ПГИС-
б-ПЭГ мицелл также зависела от pH среды: за 48 ч на-
блюдали высвобождение 51.4, 56.8 и 78.1% препарата 
при рН = 7.4, 6.5 и 5.0 соответственно. Эксперименты 

in vitro на клеточной линии HeLa (эпителиоидной 
карциномы шейки матки) показали улучшенный в 
2.3 раза цитотоксический эффект смешанных ми-
целл по сравнению с таксолом (коммерческим пре-
паратом паклитаксела), что подтверждает эффектив-
ность полученных мицелл. В свою очередь, исследо-
вания in vivo на лабораторных крысах Спрег-Доули и 
мышах породы Куньмин показали длительное время 
циркуляции смешанных ФССП-6-П(D,L)ЛА-б-ПЭГ/
ПГИС-б-ПЭГ мицелл в кровотоке, а также их эффек-
тивное накопление и удержание в опухоли.

Электростатические взаимодействия
Электростатические взаимодействия также отно-

сятся к нековалентным взаимодействиям, которые 
могут быть движущей силой самоорганизации ма-
кромолекул амфифильных блок-сополимеров, со-
держащих противоположно заряженные сегменты, 
в мицеллярные структуры – полиионные комплек-
сы (ПИК) [79]. Такие системы активно исследуют 
с середины 1990-х гг., когда впервые были получе-
ны водорастворимые ПИК-мицеллы, состоящие из 
противоположно заряженных диблок-сополимеров 
поли(L-лизина)-б-ПЭГ (ПЛ-б-ПЭГ) и поли(аспа-
рагиновой кислоты)-б-ПЭГ (ПАСПК-б-ПЭГ) [87]. 
Сферические ПЛ-б-ПЭГ/ПАСПК-б-ПЭГ мицеллы 
обладали строением “ядро–корона”: ядро представ-
ляло собой ПИК, сформированный за счет электро-
статических взаимодействий между ПЛ (поликати-
оном) и ПАСПК (полианионом), тогда как корона 
состояла из нейтральных ПЭГ-цепей. Отметим, что 
в [87] ПИК-мицеллы получили методом прямого рас-
творения исходных блок-сополимеров, то есть без ис-
пользования какого-либо органического раствори-
теля, что, безусловно, является преимуществом при 
использовании таких систем в качестве средств до-
ставки различных лекарств. 

ПИК-мицеллы, для получения которых исполь-
зуют различные противоположно заряженные поли-
электролиты, могут эффективно инкапсулировать 
не только низкомолекулярные лекарственные сред-
ства [88, 89], но и нуклеиновые кислоты (плазмид-
ную ДНК, олигонуклеотиды, малую интерферирую-
щую РНК) [90–92], антитела [93] и пр. Отметим, что 
стабильность ПИК-мицелл в растворе зависит как от 
химического состава исходных полимеров, так и от 
параметров окружающей среды, в том числе ионной 
силы раствора. Как правило, с увеличением ионной 
силы раствора ПИК-мицеллы диссоциируют до сво-
бодных блок-сополимерных цепей [94, 95], что неже-
лательно в рамках их практического применения, по-
этому для повышения устойчивости подобных систем 
получают ПИК-мицеллы, движущей силой форми-
рования которых являются не только электростати-
ческие, но и дополнительные (например, гидрофоб-
ные, π–π и пр.) взаимодействия [95–97]. 

В [95] получили ПИК-мицеллы на осно-
ве диблок-сополимеров, состоящих из поли-
катиона поли(винилбензилтриметиламмония 
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хлорида) (ПВБТАХ) и незаряженного поли(2-ме-
такрилоилоксиэтилфосфорилхолина) (ПМФХ) 
(ПВБТАХ48-б-ПМФХ20), полианиона поли(п-сти-
ролсульфоната натрия) (ПСС) и ПМФХ (ПСС51-
б-ПМФХ20) (Рис. 5). Здесь самоорганизация блок-со-
полимеров в ПИК-мицеллы происходила за счет 
как электростатических, так и гидрофобных взаи-
модействий между ПВБТАХ и ПСС блоками, тогда 
как преципитацию ПИК-мицелл в растворе предот-
вращал ПМФХ – неионный гидрофильный поли-
мер с высокой биосовместимостью. Мицеллы, полу-
ченные в результате стехиометрического смешения 
ПВБТАХ48-б-ПМФХ20 и ПСС51-б-ПМФХ20 сополи-
меров в воде, характеризовались мономодальным 
распределением по их величинам Rh. Значение Rh 
мицелл составило ~20 нм, причем оно оставалось не-
изменным в течение 20 дней, что указывает на повы-
шенную стабильность мицелл в водной среде, кото-
рая, по-видимому, связана с дополнительными ги-
дрофобными взаимодействиями между боковыми 
фенильными группами блоков ПВБТАХ и ПСС. 

Поскольку ПИК-мицеллы ПВБТАХ48-б-ПМФХ20/
ПСС51-б-ПМФХ20 в [95] сформированы в резуль-
тате электростатических взаимодействий между 
ПВБТАХ и ПСС, то они будут чувствительны к из-
менению ионной силы раствора. Как отмечалось 
выше, ПИК-мицеллы склонны диссоциировать до 
свободных блок-сополимерных цепей при доста-
точно высоких концентрациях соли в растворе. Так,  
в [94] ПИК-мицеллы, сформированные при 
смешении поли((3-(метакрилоиламино)про-
п и л ) т р и м е т и л а м м о н и й  х л о р и д а ) - б - П М ФХ 
(ПМАПТАХ48-б-ПМФХ100) и поли(2-(акрилами-
да)-2-метилпропансульфоната натрия)-б-ПМФХ 
(ПАМПС45-б-ПМФХ100), оказались устойчивы  

в растворе до концентрации NaCl, равной 0.2 М  
(Rh мицелл = 15 нм). Тогда как с увеличением концен-
трации соли от 0.2 до 0.8 М наблюдали уменьшение 
размера мицелл, а при концентрации ≥ 0.8 М прои-
зошла диссоциация ПИК-мицелл: в растворе наблю-
дали свободные блок-сополимерные цепи с Rh ~3 нм. 
Однако полученные в [95] ПВБТАХ48-б-ПМФХ20/
ПСС51-б-ПМФХ20 мицеллы оказались стабильны 
в водно-солевом растворе вплоть до концентрации 
NaCl, равной 2 М (величина Rh мицелл не менялась 
и составила ~20 нм), что, по-видимому, связано с до-
полнительной стабилизацией ядра ПИК-мицелл по-
средством гидрофобных взаимодействий. 

Стереокомплексообразование
Стереокомплексообразование – это явление, при 

котором в результате смешения набора комплемен-
тарных лево- и правовращающих структур образует-
ся стереокомплекс. Формирование стереокомплек-
са обеспечивается стереоселективными взаимодей-
ствиями (стереоспецифическим ван-дер-ваальсовым 
взаимодействием, электростатическими силами или 
образованием водородных связей) между двумя сте-
реорегулярными полимерами противоположной хи-
ральности [98]. Одним из хорошо изученных приме-
ров является стереокомплексообразование эквимо-
лярной смеси биоразлагаемого стереорегулярного 
полимера П(L,L)А и его энантиомера поли(D,D-лак-
тида) (П(D,D)ЛА) [99]. П(L,L)А/П(D,D)ЛА стерео-
комплекс характеризуется повышенной температурой 
плавления (Tпл. ~230°С) по сравнению с монополи-
мером П(L,L)ЛА или П(D,D)ЛА (Tпл. ~180°С). Кроме 
того, чистый П(L,L)ЛА и П(D,D)ЛА (α-форма) кри-
сталлизуется в орторомбическую решетку 103 [100], 
тогда как стереокомплекс П(L,L)А/П(D,D)ЛА – 

Рис. 5. Структурные формулы ПВБТАХ48-б-ПМФХ20 и ПСС51-б-ПМФХ20 сополимеров (а), схема получения 
ПИК-мицелл на их основе (б) и ПЭМ-изображение ПВБТАХ48-б-ПМФХ20/ПСС51-б-ПМФХ20 мицелл (в). Адапти-
ровано из [95]. Copyright © 2022, The Chemical Society of Japan.
Fig. 5. Structural formulas of PVBTAС48-b-PMPC20 and PNaSS51-b-PMPC20 copolymers (a), a scheme for obtaining PIC 
micelles based on them (b) and a TEM image of PVBTAС48-b-PMPС20/PNaSS51-b-PMPС20 micelles (c). Adapted from 
[95]. Copyright © 2022, The Chemical Society of Japan.
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в триклинную решетку 31 [101], обеспечивающую 
максимальные ван-дер-ваальсовые взаимодействия 
между соседними спиралями с противоположной хи-
ральностью. К синтетическим полимерам, способ-
ным к формированию стереокомплексов, относятся 
также поли(метилметакрилат) ПММА, полиизоциа-
наты, полиацетилены и пр. [102].

Стереокомплексообразование как стратегию по-
вышения коллоидной стабильности полимерных ми-
целл активно используют для задач наномедицины 
[103–108]. Стереокомплексные мицеллы, как пра-
вило, характеризуются более низкими значениями 
ККМ, меньшими размерами и повышенной устойчи-
востью. Так, в [108] диализом из ТГФ получили и ис-
следовали мицеллы на основе П(D,L)ЛА66-б-ПЭО113, 
П(L,L)ЛА46-б-ПЭО113, а также эквимолярной сме-
си П(L,L)ЛА46-б-ПЭО113 и П(D,D)ЛА56-б-ПЭО113. 
Установлено, что в процессе лиофилизации (без до-
бавления криопротектора) и последующего ре-су-
спендирования в воде лишь стереокомплексные 
П(L,L)ЛА46-б-ПЭО113/П(D,D)ЛА56-б-ПЭО113 мицел-
лы сохраняют свою структуру и размер (Dh составил  
~30 нм до и после лиофилизации), тогда как осталь-
ные склонны к агрегации. Также полученные сте-
реокомплексные мицеллы оказались способны ин-
капсулировать противораковый агент оксалиплатин: 
по данным масс-спектрометрии с индуктивно-свя-
занной плазмой содержание загруженного веще-
ства в мицеллах составило 1.26 масс. %., ЕЕ – 25.2%.  
В [103] диализом из диметилформамида (ДМФА) 
получили сферические стереокомплексные ми-
целлы размером ~100 нм на основе П(L,L)ЛА-б- 

декстрана (П(L,L)ЛА1440-б-ДЕКС37) и П(D,D)ЛА1577- 
б-ДЕКС37, нагруженные паклитакселом (ЕЕ = 86.7%). 
П(L,L)ЛА1440-б-ДЕКС37/П(D,D)ЛА1577-б-ДЕКС37 ми-
целлы с паклитакселом оказались стабильны в растворе 
бычьего сывороточного альбумина в натрий-фосфатном 
буфере при 37°С в течение двух недель. Кроме того, 
они характеризовались более контролируемым in vitro 
высвобождением паклитаксела (натрий-фосфатный буфер,  
рН 7.4, 37°С) и in vivo повышенным аккумулирова-
нием в опухоли (ортотропная модель рака молоч-
ной железы 4Т1 у мышей) по сравнению с чистым 
лекарством. 

В [105] нанопреципитацией из ДМФА готовили 
смешанные мицеллы на основе разветвленного ме-
тил-β-циклодекстрина–П(L,L)ЛА (МβЦД–П(L,L)ЛА) 
и линейного П(D,L)ЛА-б-ПЭГ, а также стерео-
комплексные мицеллы из эквимолярной смеси 
МβЦД-П(L,L)ЛА и МβЦД–П(D,D)ЛА с П(D,L)ЛА-б- 
ПЭГ, нагруженные ДОКС (Рис. 6). Все образцы ха-
рактеризовались высокой величиной ЕЕ (91–95%), 
однако in vitro скорость высвобождения ДОКС (на-
трий-фосфатный буфер, 37°С) оказалась ниже в 
случае стереокомплексных МβЦД–П(L,L)ЛА/
МβЦД–П(D,D)ЛА)/П(D,L)ЛА-б-ПЭГ мицелл, что, 
по-видимому, связано с особенностью упаковки по-
лимерных цепей в стереокомплексном П(L,L)ЛА/ 
П(D,D)ЛА ядре. Несмотря на это, in vitro ци-
тотоксические испытания на клеточных лини-
ях HeLa (карцинома шейки матки человека) и 
K562 (хроническая миелогенная лейкемия) по-
казали, что именно стереокомплексные мицел-
лы, нагруженные ДОКС, проявляют наибольшую 

Рис. 6. Схема синтеза МβЦД–П(L,L)ЛА или МβЦД–П(D,D)ЛА полимера (верхний ряд) и схема получения  
МβЦД–П(L,L)ЛА/ П(D,L)ЛА-б-ПЭГ и стереокомплексных (МβЦД–П(L,L)ЛА/МβЦД–П(D,D)ЛА)/П(D,L)ЛА-
б-ПЭГ мицелл, нагруженных доксорубицином (нижний ряд) Адаптировано из [105]. Copyright © 2019, Elsevier Ltd.
Fig. 6. Synthesis scheme of MβCD–P(L,L)LA or MβCD–P(D,D)LA polymer (top row) and the scheme for obtaining 
MβCD–P(L,L)LA/ P(D,L)LA-b-PEG and stereocomplex (MβD–P(L,L)LA/MβCD-P(D,D)LA)/Р(D,L)LA-b-PEG mi-
celles loaded with doxorubicin (bottom row). Adapted from [105]. Copyright © 2019, Elsevier Ltd.
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противоопухолевую эффективность по сравне-
нию с мицеллами МβЦД–П(L,L)ЛА/П(D,L)ЛА- 
б-ПЭГ и свободным лекарством.

Отметим, что стереокомплексообразование по-
лимеров идентичного состава, но с различной хи-
ральностью широко распространено и достаточно 
подробно изучено [109–111], тогда как процесс об-
разования стереокомплексов полимерами различно-
го химического состава и хиральности исследован в 
значительно меньшей степени. Так, в [112] предло-
жили использовать стереокомплексообразование как 
подход к созданию систем контролируемой доставки 
пептидов и белков с целью повышения их стабильно-
сти. Известно, что пептиды и белки характеризуют-
ся стереоселективностью. В качестве их мономерных 
звеньев выступают аминокислоты, основная цепь ко-
торых имеет одинаковую структуру и включает в себя 
амино- и карбоксильную группы, тогда как боковые 
цепи различны. Кроме того, все природные амино-
кислоты, за исключением глицина, имеют хиральный 
атом углерода, что делает их оптически активными  
и существующими в виде L-энантиомера [98]. Так,  
в [112] простым смешением в течение 72 ч L-инсулина 
и П(D,D)ЛА11-б-ПЭГ113 сополимера в воде при 60°С 
и различном массовом соотношении инсулин/поли-
мер (5, 10, 20 или 30% масс./масс.) получили гетеро-
стереокомплексные мицеллы. In vitro высвобожде-
ние (натрий-фосфатный буфер, 37°С) инсулина из 
сформированных мицелл с гетеростереокомплексным 
ядром L-инсулин/П(D,D)ЛА происходило в течение 
14 недель, причем “взрывной” характер высвобожде-
ния на начальном этапе отсутствовал. Кроме того, ха-
рактер высвобождения инсулина из мицелл не зависел 
от его массового содержания в них: по-видимому, ки-
нетика высвобождения инсулина определяется именно 
скоростью деградации полимерных цепей П(D,D)ЛА 
и последующим разрушением гетеростереокомплек-
са, а не скоростью диффузии инсулина из ядра поли-
мерной мицеллы. Терапевтическую эффективность 
мицеллл L-инсулин/П(D,D)ЛА11-б-ПЭГ113 оценива-
ли на модели диабета у мышей породы Акита. В ре-
зультате тщательного контроля уровня глюкозы в кро-
ви лабораторных животных и их массы тела в течение  
17 недель установлено, что для мышей, получавших ин-
сулин в наноформе, характерно значительное снижение 
уровня глюкозы, а также нормальный набор массы тела.

Отметим, что стереокомплексообразование является 
эффективной стратегией повышения стабильности не 
только полимерных мицелл, но и гидрогелей [113, 114]. 

МОНОМОЛЕКУЛЯРНЫЕ МИЦЕЛЛЫ

Мономолекулярные мицеллы – это наноразмер-
ные структуры типа “ядро–корона”, состоящие из 
одной амфифильной макромолекулы определенно-
го химического состава, гидрофобные и гидрофиль-
ные части которой формируют ядро и корону соот-
ветственно. Получение мономолекулярных мицелл 

также является перспективной стратегией повыше-
ния устойчивости полимерных наноформ лекар-
ственных препаратов, так как они обладают превос-
ходной стабильностью к резкому разбавлению, из-
менениям pH, температуры, ионной силы раствора. 
Мономолекулярные мицеллы могут быть сформи-
рованы различными амфифильными полимерами: 
блочными, гребнеобразными, звездообразными, ден-
дримерами, сверхразветвленными [115–121]. 

Отметим, что благодаря своим структурным осо-
бенностям звездообразные и сверхразветвленные по-
лимеры обладают более низкими значениями ККМ 
(по сравнению с линейными) и открывают широ-
кие возможности для функционализации и прида-
ния им стимул-чувствительных свойств [122, 123],  
а мицеллы на их основе характеризуются повышен-
ной устойчивостью и способностью к более эффек-
тивному инкапсулированию лекарственных молекул. 
Кроме того, в ряду полимеров с близкой молекуляр-
ной массой и химическим составом увеличение чис-
ла ветвлений в структуре приводит к росту периода 
полувыведения (t1/2) из кровотока: разветвленные по-
лимеры способны дольше циркулировать в кровото-
ке, чем линейные [124]. Например, в [125] синтези-
ровали серию полиэфирных дендримеров, состоящих 
из двух дендронов на основе 2,2-бис(гидроксиметил)
пропионовой кислоты, которые затем функционали-
зировали ПЭГ с 2, 4 и 8 лучами, и исследовали вли-
яние архитектуры дендримера на скорость его выве-
дения из кровотока. Так, для трех типов макромоле-
кул со схожей молекулярной массой ~40 кДа величина 
t1/2 составила 1.4 ± 0.4 ч для двухлучевого дендримера 
(т.е. линейного полимера), 26 ± 6 и 31 ± 2 ч – для 4- и 
8-лучевого дендримера соответственно [126]. Таким 
образом, синтез разветвленных полимерных макро-
молекул и создание на их основе мономолекулярных 
мицелл для адресной доставки лекарств представля-
ется перспективным направлением в наномедицине, 
так как мономолекулярная мицелла по определению 
не способна к распаду и, соответственно, преждевре-
менному нежелательному высвобождению загружен-
ного вещества при резком разбавлении. 

В [121] синтезировали звездообразные блок-со-
полимеры различного строения с количеством лу-
чей от 2 до 8 из поли(капролактоновых) (ПКЛ) сег-
ментов с варьируемой растворимостью и скоростью 
разложения – медленно деградируемых гидрофоб-
ных ПКЛ цепей и быстро разлагаемых анионных 
ПКЛ цепей с карбоксильными группами (К-ПКЛ). 
Оказалось, что именно 6-лучевые блок-сополимеры 
sПКЛ48-б-К-ПКЛx (здесь величина 48 означает, что 
на один луч sПКЛ приходится 8 мономерных звеньев)  
в зависимости от степени полимеризации x гидро-
фильных анионных цепей К-ПКЛ могут форми-
ровать мономолекулярные мицеллы. Так, sПКЛ48-
б-К-ПКЛx, где x = 12, 24 или 36 звеньев (то есть 2, 4 
или 6 звеньев на луч), в водной среде самоассоцииро-
вали в мультимицеллы с величиной Dh, равной ~170, 
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115 и 60 нм соответственно. В свою очередь, sПКЛ48-
б-К-ПКЛ48 и sПКЛ48-б-К-ПКЛ60 образовывали мо-
номолекулярные мицеллы, характеризующиеся суще-
ственно меньшим размером (Dh ~35 и 24 нм), форми-
рование которых было подтверждено также методом 
флуоресцентной спектроскопии. По-видимому, с уве-
личением молекулярной массы цепей К-ПКЛ в лучах 
и, соответственно, ростом числа отрицательно заря-
женных групп на периферии макромолекулы проис-
ходит коллапс гидрофобных ПКЛ цепей, что обеспе-
чивает образование компактного ядра мономицеллы и 
тем самым минимизацию электростатического оттал-
кивания между заряженными лучами К-ПКЛ (Рис. 7). 
Степень полимеризации заряженных гидрофиль-
ных цепей К-ПКЛ в 6-лучевых сополимерах оказы-
вала влияние и на содержание в мицеллах загружен-
ного лекарства ДОКС: в случае sПКЛ48-б-К-ПКЛx  
(x = 12, 24 или 36 звеньев) количество загруженно-
го вещества в мультимицеллах составило менее 3%, 
тогда как в случае sПКЛ48-б-К-ПКЛ48 и sПКЛ48-
б-К-ПКЛ60 содержание лекарства в мономицеллах 
достигало 5.5 и 14.3% соответственно.

Кроме того, изучили устойчивость к разбавлению 
наноформ ДОКС на основе мульти- и мономицелл 
sПКЛ48-б-К-ПКЛx. Согласно ДРС-данным, после-
довательное разбавление в 1000 раз суспензии мо-
номицелл sПКЛ48-б-К-ПКЛ60, нагруженных лекар-
ством, не приводило к изменению их размера, тог-
да как уже стократное разбавление мультимицелл 
sПКЛ48-б-К-ПКЛ36 с ДОКС приводило к их диссо-
циации на более мелкие частицы (наблюдали бимо-
дальное распределение интенсивности рассеянно-
го света по размерам). In vitro цитотоксический эф-
фект обоих типов мицелл, нагруженных ДОКС, а 
также чистого лекарства исследовали на клеточных 

линиях MCF-7 (рак молочной железы), MDA-MB-231  
и MDA-MB-468 (трижды негативный рак молочной 
железы) и MIA PaCa2 (рак поджелудочной железы) 
с помощью МТТ-теста. ДОКС-содержащие моно-
мицеллы sПКЛ48-б-К-ПКЛ60 показали более низ-
кие значения IC50 (т.е. концентрацию активного ве-
щества, которая ингибирует рост клеток на 50%) по 
сравнению с мультимицеллами sПКЛ48-б-К-ПКЛ36 
на всех исследуемых клеточных линиях, что может 
быть связано с повышенным содержанием лекар-
ства в них (~3 и 14.3% для мульти- и мономицелл 
соответственно). 

Также оценили in vivo противоопухолевую эф-
фективность мицелл, нагруженных ДОКС, в модели 
подкожной ксенотрансплантации рака поджелудоч-
ной железы у мышей (MIA PaCa2). Животные с опу-
холью размером ~50 мм3 были разделены на четыре 
группы, в зависимости от номера группы мышам осу-
ществляли внутрибрюшинное введение натрий-фос-
фатного буфера (негативный контроль), свободного 
ДОКС (позитивный контроль), ДОКС-содержащие 
мультимицеллы sПКЛ48-б-К-ПКЛ36 и мономицел-
лы sПКЛ48-б-К-ПКЛ60. Для группы животных, по-
лучающих инъекции буферного раствора (негатив-
ный контроль), наблюдали экспоненциальный рост 
V опухоли в течение недели, а за 19 дней наблюде-
ний V опухоли достиг ~1500 мм3. Для группы, по-
лучающей чистый ДОКС (позитивный контроль), 
характерно существенное подавление роста опу-
холи, V которой достиг ~500 мм3 к концу экспери-
мента. Аналогичные результаты были получены для 
группы мышей, которым вводили суспензию муль-
тимицелл sПКЛ48-б-К-ПКЛ36 с активным агентом, 
что указывает на схожую эффективность исследуе-
мой наноформы со свободным лекарством. В свою 

Рис. 7. Схематичное изображение формирования мульти- и мономицелл в зависимости от молекулярного состава 
6-лучевых сополимеров sПКЛ48-б-К-ПКЛx. Адаптировано из [121]. Copyright © 2025, Wiley-VCH GmbH.
Fig. 7. Schematic representation of the formation of multi- and monomicelles depending on the molecular composition of 
6-arm copolymers sPCL48-b-K-PCLx. Adapted from [121]. Copyright © 2025, Wiley-VCH GmbH.
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очередь, ДОКС-содержащие мономицеллы sПКЛ48-
б-К-ПКЛ60 показали наиболее эффективное пода-
вление роста опухоли по сравнению с чистым лекар-
ством и его наноформой на основе мультимицелл: на 
19 день V опухоли составил ~225 мм3, что может быть 
связано с их лучшим накоплением и удержанием бла-
годаря малому размеру (~24 нм). Отметим, что разра-
ботанный подход не ограничивается только моделью 
рака поджелудочной железы и может быть использо-
ван и для других моделей рака. 

Как отмечалось выше, мономолекулярные мицел-
лы могут быть также приготовлены и на основе греб-
необразных полимеров – разветвленных полимеров, 
представляющих собой линейную основную цепь с 
привитыми боковыми цепями. Например, в [127] для 
получения мономолекулярных мицелл со строени-
ем “ядро–корона” синтезировали гребнеобразный 
полимер, состоящий из основной цепи и привитых 
амфифильных боковых цепей. Синтез такого гребне-
образного полимера осуществляли в несколько стадий 
(Рис. 8). На первом этапе получали основную поли-
мерную цепь сополимеризацией (2-триметилсилок-
си)этилметакрилата (ЭМА-ТМС) и метилметакри-
лата (ММА) с мольным соотношением ЭМА-ТМС/
ММА, варьируемым от 30 до 72%. В результате была 
получена серия П(ЭМА-ТМС-со-ММА) сополиме-
ров со степенью полимеризации основной цепи, 
равной ~1000 мономерных звеньев (контурная длина  
~150 нм), и различной степенью прививки (0.3, 0.5 
и 0.72). Далее к основной цепи полимера пришива-
ли боковые гидрофобные цепи П(D,L)ЛА со степе-
нью полимеризации ~20 мономерных звеньев, кото-
рые затем модифицировали гидрофильными цепя-
ми поли(2-метакрилоилоксиэтил фосфорилхолина) 

(ПМФХ) со степень полимеризации ~150 мономерных 
звеньев. Мономицеллы на основе синтезированных 
гребнеобразных полимеров П(ЭМА800-со-ММА300)-
графт-(П(D,L)ЛА14-б-ПМФХ140) (шифр ГБ1), 
П(ЭМА600-со-ММА600)-графт-(П(D,L)ЛА17-
б-ПМФХ150) (шифр ГБ2) и П(ЭМА240-со-ММА560)-
графт-(П(D,L)ЛА22-б-ПМФХ180) (шифр ГБ3) полу-
чали методом замены растворителя (диализом). По 
данным атомно-силовой микроскопии исследуемые 
полимеры ГБ1, ГБ2 и ГБ3 формировали цилиндри-
ческие мономицеллы с длиной 138.3, 134.6 и 117.5 нм, 
шириной – 76.1, 88.2 и 83.3 нм, толщиной ПФМХ 
короны – 13.8, 33.5 и 32.8 нм. Также для сравнения 
были получены сферические мицеллы на основе ли-
нейного блок-сополимера П(D,L)ЛА21-б-ПМФХ135.

Установлено, что при массовом соотношении по-
лимер : лекарство = 3 : 1 все полученные мономолеку-
лярные цилиндрические мицеллы ГБ1–ГБ3 способны 
эффективно инкапсулировать два модельных веще-
ства (родамин Б и паклитаксел) независимо от степе-
ни их гидрофобности. Так, в случае менее гидрофоб-
ного родамина Б величина ЕЕ для всех исследуемых 
мономицелл составила 50–55%, тогда как содержание 
загруженного вещества (DLC, от англ. “drug loading 
content”) – 14–15%. Для П(D,L)ЛА21-б-ПМФХ135 
мицелл значения ЕЕ и DLC равнялись 44 и 11% со-
ответственно. Более гидрофобный паклитаксел так-
же эффективнее инкапсулировался в мономолеку-
лярные мицеллы ГБ1–ГБ3 по сравнению с П(D,L)
ЛА21-б-ПМФХ135 мицеллами. В ряду мономолекуляр-
ных мицелл наибольшей ЕЕ паклитаксела обладали 
ГБ3 – 83% (DLC = 21.7%), наименьшей – ГБ1: зна-
чения ЕЕ и DLC составили 73 и 18.5% соответствен-
но. Мицеллы же на основе П(D,L)ЛА21-б-ПМФХ135 

Рис. 8. Схематичное изображение синтеза гребнеобразных полимеров П(ЭМА-со-ММА)-графт-(П(D,L)ЛА-б-ПМ-
ФХ) – основ для мономолекулярных мицелл. Адаптировано из [127]. Copyright © 2024, Wiley-VCH GmbH (Open Access).
Fig. 8. Schematic representation of the synthesis of bottlebrush polymers PH(EMA-co-MMA)-graft-(P(D,L)LA-b–PMPC) - 
bases for monomolecular micelles. Adapted from [127]. Copyright © 2024, Wiley-VCH GmbH (Open Access).
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оказались способны загрузить лишь 14.4% паклитак-
села (величина ЕЕ = 57%). Наблюдаемые различия 
могут быть связаны с варьируемым объемом гидро-
фобного П(D,L)ЛА ядра в исследуемых мицеллах: в 
случае мицелл на основе гребнеобразных полимеров 
число гидрофобных сегментов гораздо больше (по 
сравнению с линейным блок-сополимером), что и 
приводит к увеличению в них количества загружен-
ных активных веществ. Отметим, что наибольшее со-
держание гидрофобных веществ продемонстрирова-
ли мицеллы на основе ГБ3 – полимера с наименьшей 
плотностью прививки боковых цепей, то есть данный 
параметр также следует учитывать при разработке на-
ноформ лекарств на основе подобных полимеров. 

При сравнении кинетики высвобождения актив-
ных агентов из мономолекулярных мицелл на основе 
ГБ1–ГБ3 и П(D,L)ЛА21-б-ПМФХ135 обнаружено, что 
все мономицеллы характеризуются более медленным 
высвобождением как родамина Б, так и паклитаксе-
ла по сравнению с П(D,L)ЛА21-б-ПМФХ135 мицелла-
ми. По-видимому, это может быть связано с динами-
ческой структурой П(D,L)ЛА21-б-ПМФХ135 мицелл, 
вследствие которой они могут частично диссоцииро-
вать в водной среде, что приводит к более интенсив-
ному (и даже “взрывному”) высвобождению загру-
женных молекул.

ЗАКЛЮЧЕНИЕ

Полимерные мицеллы, зарекомендовавшие себя 
как перспективные наноносители, способные эф-
фективно инкапсулировать различные лекарствен-
ные средства, обеспечивать их in vitro пролонгирован-
ное высвобождение и адресную доставку, оказались 
не лишены недостатков. Так, значительное разбавле-
ние (например, при попадании в кровоток) или рез-
кое изменение условий внешней среды (pH, темпера-
туры, ионной силы раствора) может повлечь распад 
полимерных мицелл до неассоциированных поли-
мерных макромолекул и, соответственно, преждев-
ременное “взрывное” высвобождение загруженного 
в них лекарственного агента. Для преодоления дан-
ного ограничения разрабатывается множество страте-
гий повышения устойчивости полимерных мицелл, в 
обзоре рассмотрены лишь некоторые из них: химиче-
ская сшивка полимерных цепей, формирующих ядро 
и/или корону мицелл, комплексообразование за счет 
нековалентных взаимодействий между блоками (или 
физическая сшивка) и получение мономолекулярных 

мицелл, то есть мицелл, сформированных одной ам-
фифильной макромолекулой. 

Химическая сшивка полимерных цепей в ядре или 
короне мицеллы существенно повышают ее устойчи-
вость к внешним воздействиям. Однако, несмотря 
на то, что химически сшитые полимерные мицеллы  
(в том числе стимул-чувствительные) получают и ис-
следуют, начиная с конца 70-х гг. XX века, по-преж-
нему остро стоит вопрос о влиянии природы и плот-
ности химической сшивки на поведение таких ми-
целл in vivo. Кроме того, химическая сшивка может 
оказывать неблагоприятное влияние как на биораз-
лагаемость носителя, так и на биоактивность загру-
женного в него лекарственного агента. В свою оче-
редь, физическая сшивка сегментов полимерных 
мицелл за счет нековалентных взаимодействий (ги-
дрофобных, электростатических взаимодействий, 
стереокомплексообразования и пр.) также позволя-
ет повысить устойчивость мицелл, увеличить в них 
содержание загруженного лекарственного вещества  
и обеспечить его пролонгированное и настраивае-
мое высвобождение. Отметим, что для получения 
физически сшитых полимерных мицелл использу-
ют смеси полимеров различного химического соста-
ва (кроме случая стереокомплексообразования, хотя  
и здесь есть возможность получать гетеростереоком-
плексы), что открывает широкие возможности для 
исследователей: комбинируя различные полимеры 
в варьируемом соотношении, можно добиться дей-
ствительно впечатляющих результатов. И, наконец, 
получение мономолекулярных мицелл также являет-
ся перспективной стратегией повышения не только 
устойчивости полимерных наноформ лекарств (ведь 
мономицеллы по определению не способны диссоци-
ировать), но также существенного увеличения време-
ни их циркуляции в кровотоке. Мономолекулярные 
мицеллы можно получать на основе полимеров раз-
личного строения: блочных, гребнеобразных, звездо-
образных, дендримеров, сверхразветвленных, однако 
все методики синтеза являются многоступенчатыми, 
длительными, трудо- и ресурсозатратными. 

Отметим, что все вышеперечисленные стратегии 
имеют достоинства и недостатки. И мы полагаем, что 
выбор того или иного пути повышения устойчивости 
полимерных мицелл для использования их в наноме-
дицине должен зависеть от конкретной задачи:  типа 
опухоли, природы используемого лекарственного 
агента, желаемого профиля высвобождения и пр.
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